Metamath Proof Explorer


Theorem nn0zi

Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypothesis nn0zi.1
|- N e. NN0
Assertion nn0zi
|- N e. ZZ

Proof

Step Hyp Ref Expression
1 nn0zi.1
 |-  N e. NN0
2 nn0ssz
 |-  NN0 C_ ZZ
3 2 1 sselii
 |-  N e. ZZ