Step |
Hyp |
Ref |
Expression |
1 |
|
orc |
|- ( x = 1 -> ( x = 1 \/ ( x - 1 ) e. NN ) ) |
2 |
|
1cnd |
|- ( x = 1 -> 1 e. CC ) |
3 |
1 2
|
2thd |
|- ( x = 1 -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> 1 e. CC ) ) |
4 |
|
eqeq1 |
|- ( x = y -> ( x = 1 <-> y = 1 ) ) |
5 |
|
oveq1 |
|- ( x = y -> ( x - 1 ) = ( y - 1 ) ) |
6 |
5
|
eleq1d |
|- ( x = y -> ( ( x - 1 ) e. NN <-> ( y - 1 ) e. NN ) ) |
7 |
4 6
|
orbi12d |
|- ( x = y -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> ( y = 1 \/ ( y - 1 ) e. NN ) ) ) |
8 |
|
eqeq1 |
|- ( x = ( y + 1 ) -> ( x = 1 <-> ( y + 1 ) = 1 ) ) |
9 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x - 1 ) = ( ( y + 1 ) - 1 ) ) |
10 |
9
|
eleq1d |
|- ( x = ( y + 1 ) -> ( ( x - 1 ) e. NN <-> ( ( y + 1 ) - 1 ) e. NN ) ) |
11 |
8 10
|
orbi12d |
|- ( x = ( y + 1 ) -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> ( ( y + 1 ) = 1 \/ ( ( y + 1 ) - 1 ) e. NN ) ) ) |
12 |
|
eqeq1 |
|- ( x = A -> ( x = 1 <-> A = 1 ) ) |
13 |
|
oveq1 |
|- ( x = A -> ( x - 1 ) = ( A - 1 ) ) |
14 |
13
|
eleq1d |
|- ( x = A -> ( ( x - 1 ) e. NN <-> ( A - 1 ) e. NN ) ) |
15 |
12 14
|
orbi12d |
|- ( x = A -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> ( A = 1 \/ ( A - 1 ) e. NN ) ) ) |
16 |
|
ax-1cn |
|- 1 e. CC |
17 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
18 |
|
pncan |
|- ( ( y e. CC /\ 1 e. CC ) -> ( ( y + 1 ) - 1 ) = y ) |
19 |
17 16 18
|
sylancl |
|- ( y e. NN -> ( ( y + 1 ) - 1 ) = y ) |
20 |
|
id |
|- ( y e. NN -> y e. NN ) |
21 |
19 20
|
eqeltrd |
|- ( y e. NN -> ( ( y + 1 ) - 1 ) e. NN ) |
22 |
21
|
olcd |
|- ( y e. NN -> ( ( y + 1 ) = 1 \/ ( ( y + 1 ) - 1 ) e. NN ) ) |
23 |
22
|
a1d |
|- ( y e. NN -> ( ( y = 1 \/ ( y - 1 ) e. NN ) -> ( ( y + 1 ) = 1 \/ ( ( y + 1 ) - 1 ) e. NN ) ) ) |
24 |
3 7 11 15 16 23
|
nnind |
|- ( A e. NN -> ( A = 1 \/ ( A - 1 ) e. NN ) ) |