| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orc |
|- ( x = 1 -> ( x = 1 \/ ( x - 1 ) e. NN ) ) |
| 2 |
|
1cnd |
|- ( x = 1 -> 1 e. CC ) |
| 3 |
1 2
|
2thd |
|- ( x = 1 -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> 1 e. CC ) ) |
| 4 |
|
eqeq1 |
|- ( x = y -> ( x = 1 <-> y = 1 ) ) |
| 5 |
|
oveq1 |
|- ( x = y -> ( x - 1 ) = ( y - 1 ) ) |
| 6 |
5
|
eleq1d |
|- ( x = y -> ( ( x - 1 ) e. NN <-> ( y - 1 ) e. NN ) ) |
| 7 |
4 6
|
orbi12d |
|- ( x = y -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> ( y = 1 \/ ( y - 1 ) e. NN ) ) ) |
| 8 |
|
eqeq1 |
|- ( x = ( y + 1 ) -> ( x = 1 <-> ( y + 1 ) = 1 ) ) |
| 9 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x - 1 ) = ( ( y + 1 ) - 1 ) ) |
| 10 |
9
|
eleq1d |
|- ( x = ( y + 1 ) -> ( ( x - 1 ) e. NN <-> ( ( y + 1 ) - 1 ) e. NN ) ) |
| 11 |
8 10
|
orbi12d |
|- ( x = ( y + 1 ) -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> ( ( y + 1 ) = 1 \/ ( ( y + 1 ) - 1 ) e. NN ) ) ) |
| 12 |
|
eqeq1 |
|- ( x = A -> ( x = 1 <-> A = 1 ) ) |
| 13 |
|
oveq1 |
|- ( x = A -> ( x - 1 ) = ( A - 1 ) ) |
| 14 |
13
|
eleq1d |
|- ( x = A -> ( ( x - 1 ) e. NN <-> ( A - 1 ) e. NN ) ) |
| 15 |
12 14
|
orbi12d |
|- ( x = A -> ( ( x = 1 \/ ( x - 1 ) e. NN ) <-> ( A = 1 \/ ( A - 1 ) e. NN ) ) ) |
| 16 |
|
ax-1cn |
|- 1 e. CC |
| 17 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
| 18 |
|
pncan |
|- ( ( y e. CC /\ 1 e. CC ) -> ( ( y + 1 ) - 1 ) = y ) |
| 19 |
17 16 18
|
sylancl |
|- ( y e. NN -> ( ( y + 1 ) - 1 ) = y ) |
| 20 |
|
id |
|- ( y e. NN -> y e. NN ) |
| 21 |
19 20
|
eqeltrd |
|- ( y e. NN -> ( ( y + 1 ) - 1 ) e. NN ) |
| 22 |
21
|
olcd |
|- ( y e. NN -> ( ( y + 1 ) = 1 \/ ( ( y + 1 ) - 1 ) e. NN ) ) |
| 23 |
22
|
a1d |
|- ( y e. NN -> ( ( y = 1 \/ ( y - 1 ) e. NN ) -> ( ( y + 1 ) = 1 \/ ( ( y + 1 ) - 1 ) e. NN ) ) ) |
| 24 |
3 7 11 15 16 23
|
nnind |
|- ( A e. NN -> ( A = 1 \/ ( A - 1 ) e. NN ) ) |