Step |
Hyp |
Ref |
Expression |
1 |
|
nn1suc.1 |
|- ( x = 1 -> ( ph <-> ps ) ) |
2 |
|
nn1suc.3 |
|- ( x = ( y + 1 ) -> ( ph <-> ch ) ) |
3 |
|
nn1suc.4 |
|- ( x = A -> ( ph <-> th ) ) |
4 |
|
nn1suc.5 |
|- ps |
5 |
|
nn1suc.6 |
|- ( y e. NN -> ch ) |
6 |
|
1ex |
|- 1 e. _V |
7 |
6 1
|
sbcie |
|- ( [. 1 / x ]. ph <-> ps ) |
8 |
4 7
|
mpbir |
|- [. 1 / x ]. ph |
9 |
|
1nn |
|- 1 e. NN |
10 |
|
eleq1 |
|- ( A = 1 -> ( A e. NN <-> 1 e. NN ) ) |
11 |
9 10
|
mpbiri |
|- ( A = 1 -> A e. NN ) |
12 |
3
|
sbcieg |
|- ( A e. NN -> ( [. A / x ]. ph <-> th ) ) |
13 |
11 12
|
syl |
|- ( A = 1 -> ( [. A / x ]. ph <-> th ) ) |
14 |
|
dfsbcq |
|- ( A = 1 -> ( [. A / x ]. ph <-> [. 1 / x ]. ph ) ) |
15 |
13 14
|
bitr3d |
|- ( A = 1 -> ( th <-> [. 1 / x ]. ph ) ) |
16 |
8 15
|
mpbiri |
|- ( A = 1 -> th ) |
17 |
16
|
a1i |
|- ( A e. NN -> ( A = 1 -> th ) ) |
18 |
|
ovex |
|- ( y + 1 ) e. _V |
19 |
18 2
|
sbcie |
|- ( [. ( y + 1 ) / x ]. ph <-> ch ) |
20 |
|
oveq1 |
|- ( y = ( A - 1 ) -> ( y + 1 ) = ( ( A - 1 ) + 1 ) ) |
21 |
20
|
sbceq1d |
|- ( y = ( A - 1 ) -> ( [. ( y + 1 ) / x ]. ph <-> [. ( ( A - 1 ) + 1 ) / x ]. ph ) ) |
22 |
19 21
|
bitr3id |
|- ( y = ( A - 1 ) -> ( ch <-> [. ( ( A - 1 ) + 1 ) / x ]. ph ) ) |
23 |
22 5
|
vtoclga |
|- ( ( A - 1 ) e. NN -> [. ( ( A - 1 ) + 1 ) / x ]. ph ) |
24 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
25 |
|
ax-1cn |
|- 1 e. CC |
26 |
|
npcan |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) + 1 ) = A ) |
27 |
24 25 26
|
sylancl |
|- ( A e. NN -> ( ( A - 1 ) + 1 ) = A ) |
28 |
27
|
sbceq1d |
|- ( A e. NN -> ( [. ( ( A - 1 ) + 1 ) / x ]. ph <-> [. A / x ]. ph ) ) |
29 |
28 12
|
bitrd |
|- ( A e. NN -> ( [. ( ( A - 1 ) + 1 ) / x ]. ph <-> th ) ) |
30 |
23 29
|
syl5ib |
|- ( A e. NN -> ( ( A - 1 ) e. NN -> th ) ) |
31 |
|
nn1m1nn |
|- ( A e. NN -> ( A = 1 \/ ( A - 1 ) e. NN ) ) |
32 |
17 30 31
|
mpjaod |
|- ( A e. NN -> th ) |