| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn1suc.1 |
|- ( x = 1 -> ( ph <-> ps ) ) |
| 2 |
|
nn1suc.3 |
|- ( x = ( y + 1 ) -> ( ph <-> ch ) ) |
| 3 |
|
nn1suc.4 |
|- ( x = A -> ( ph <-> th ) ) |
| 4 |
|
nn1suc.5 |
|- ps |
| 5 |
|
nn1suc.6 |
|- ( y e. NN -> ch ) |
| 6 |
|
1ex |
|- 1 e. _V |
| 7 |
6 1
|
sbcie |
|- ( [. 1 / x ]. ph <-> ps ) |
| 8 |
4 7
|
mpbir |
|- [. 1 / x ]. ph |
| 9 |
|
1nn |
|- 1 e. NN |
| 10 |
|
eleq1 |
|- ( A = 1 -> ( A e. NN <-> 1 e. NN ) ) |
| 11 |
9 10
|
mpbiri |
|- ( A = 1 -> A e. NN ) |
| 12 |
3
|
sbcieg |
|- ( A e. NN -> ( [. A / x ]. ph <-> th ) ) |
| 13 |
11 12
|
syl |
|- ( A = 1 -> ( [. A / x ]. ph <-> th ) ) |
| 14 |
|
dfsbcq |
|- ( A = 1 -> ( [. A / x ]. ph <-> [. 1 / x ]. ph ) ) |
| 15 |
13 14
|
bitr3d |
|- ( A = 1 -> ( th <-> [. 1 / x ]. ph ) ) |
| 16 |
8 15
|
mpbiri |
|- ( A = 1 -> th ) |
| 17 |
16
|
a1i |
|- ( A e. NN -> ( A = 1 -> th ) ) |
| 18 |
|
ovex |
|- ( y + 1 ) e. _V |
| 19 |
18 2
|
sbcie |
|- ( [. ( y + 1 ) / x ]. ph <-> ch ) |
| 20 |
|
oveq1 |
|- ( y = ( A - 1 ) -> ( y + 1 ) = ( ( A - 1 ) + 1 ) ) |
| 21 |
20
|
sbceq1d |
|- ( y = ( A - 1 ) -> ( [. ( y + 1 ) / x ]. ph <-> [. ( ( A - 1 ) + 1 ) / x ]. ph ) ) |
| 22 |
19 21
|
bitr3id |
|- ( y = ( A - 1 ) -> ( ch <-> [. ( ( A - 1 ) + 1 ) / x ]. ph ) ) |
| 23 |
22 5
|
vtoclga |
|- ( ( A - 1 ) e. NN -> [. ( ( A - 1 ) + 1 ) / x ]. ph ) |
| 24 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
| 25 |
|
ax-1cn |
|- 1 e. CC |
| 26 |
|
npcan |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) + 1 ) = A ) |
| 27 |
24 25 26
|
sylancl |
|- ( A e. NN -> ( ( A - 1 ) + 1 ) = A ) |
| 28 |
27
|
sbceq1d |
|- ( A e. NN -> ( [. ( ( A - 1 ) + 1 ) / x ]. ph <-> [. A / x ]. ph ) ) |
| 29 |
28 12
|
bitrd |
|- ( A e. NN -> ( [. ( ( A - 1 ) + 1 ) / x ]. ph <-> th ) ) |
| 30 |
23 29
|
imbitrid |
|- ( A e. NN -> ( ( A - 1 ) e. NN -> th ) ) |
| 31 |
|
nn1m1nn |
|- ( A e. NN -> ( A = 1 \/ ( A - 1 ) e. NN ) ) |
| 32 |
17 30 31
|
mpjaod |
|- ( A e. NN -> th ) |