Description: Multiply an element of _om by 2o . (Contributed by Scott Fenton, 16-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn2m | |- ( A e. _om -> ( 2o .o A ) = ( A +o A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2onn | |- 2o e. _om | |
| 2 | nnmcom | |- ( ( 2o e. _om /\ A e. _om ) -> ( 2o .o A ) = ( A .o 2o ) ) | |
| 3 | 1 2 | mpan | |- ( A e. _om -> ( 2o .o A ) = ( A .o 2o ) ) | 
| 4 | nnm2 | |- ( A e. _om -> ( A .o 2o ) = ( A +o A ) ) | |
| 5 | 3 4 | eqtrd | |- ( A e. _om -> ( 2o .o A ) = ( A +o A ) ) |