Description: Multiply an element of _om by 2o . (Contributed by Scott Fenton, 16-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nn2m | |- ( A e. _om -> ( 2o .o A ) = ( A +o A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn | |- 2o e. _om |
|
2 | nnmcom | |- ( ( 2o e. _om /\ A e. _om ) -> ( 2o .o A ) = ( A .o 2o ) ) |
|
3 | 1 2 | mpan | |- ( A e. _om -> ( 2o .o A ) = ( A .o 2o ) ) |
4 | nnm2 | |- ( A e. _om -> ( A .o 2o ) = ( A +o A ) ) |
|
5 | 3 4 | eqtrd | |- ( A e. _om -> ( 2o .o A ) = ( A +o A ) ) |