Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = (/) -> ( (/) +o x ) = ( (/) +o (/) ) ) |
2 |
|
id |
|- ( x = (/) -> x = (/) ) |
3 |
1 2
|
eqeq12d |
|- ( x = (/) -> ( ( (/) +o x ) = x <-> ( (/) +o (/) ) = (/) ) ) |
4 |
|
oveq2 |
|- ( x = y -> ( (/) +o x ) = ( (/) +o y ) ) |
5 |
|
id |
|- ( x = y -> x = y ) |
6 |
4 5
|
eqeq12d |
|- ( x = y -> ( ( (/) +o x ) = x <-> ( (/) +o y ) = y ) ) |
7 |
|
oveq2 |
|- ( x = suc y -> ( (/) +o x ) = ( (/) +o suc y ) ) |
8 |
|
id |
|- ( x = suc y -> x = suc y ) |
9 |
7 8
|
eqeq12d |
|- ( x = suc y -> ( ( (/) +o x ) = x <-> ( (/) +o suc y ) = suc y ) ) |
10 |
|
oveq2 |
|- ( x = A -> ( (/) +o x ) = ( (/) +o A ) ) |
11 |
|
id |
|- ( x = A -> x = A ) |
12 |
10 11
|
eqeq12d |
|- ( x = A -> ( ( (/) +o x ) = x <-> ( (/) +o A ) = A ) ) |
13 |
|
0elon |
|- (/) e. On |
14 |
|
oa0 |
|- ( (/) e. On -> ( (/) +o (/) ) = (/) ) |
15 |
13 14
|
ax-mp |
|- ( (/) +o (/) ) = (/) |
16 |
|
peano1 |
|- (/) e. _om |
17 |
|
nnasuc |
|- ( ( (/) e. _om /\ y e. _om ) -> ( (/) +o suc y ) = suc ( (/) +o y ) ) |
18 |
16 17
|
mpan |
|- ( y e. _om -> ( (/) +o suc y ) = suc ( (/) +o y ) ) |
19 |
|
suceq |
|- ( ( (/) +o y ) = y -> suc ( (/) +o y ) = suc y ) |
20 |
19
|
eqeq2d |
|- ( ( (/) +o y ) = y -> ( ( (/) +o suc y ) = suc ( (/) +o y ) <-> ( (/) +o suc y ) = suc y ) ) |
21 |
18 20
|
syl5ibcom |
|- ( y e. _om -> ( ( (/) +o y ) = y -> ( (/) +o suc y ) = suc y ) ) |
22 |
3 6 9 12 15 21
|
finds |
|- ( A e. _om -> ( (/) +o A ) = A ) |