| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = (/) -> ( (/) +o x ) = ( (/) +o (/) ) ) |
| 2 |
|
id |
|- ( x = (/) -> x = (/) ) |
| 3 |
1 2
|
eqeq12d |
|- ( x = (/) -> ( ( (/) +o x ) = x <-> ( (/) +o (/) ) = (/) ) ) |
| 4 |
|
oveq2 |
|- ( x = y -> ( (/) +o x ) = ( (/) +o y ) ) |
| 5 |
|
id |
|- ( x = y -> x = y ) |
| 6 |
4 5
|
eqeq12d |
|- ( x = y -> ( ( (/) +o x ) = x <-> ( (/) +o y ) = y ) ) |
| 7 |
|
oveq2 |
|- ( x = suc y -> ( (/) +o x ) = ( (/) +o suc y ) ) |
| 8 |
|
id |
|- ( x = suc y -> x = suc y ) |
| 9 |
7 8
|
eqeq12d |
|- ( x = suc y -> ( ( (/) +o x ) = x <-> ( (/) +o suc y ) = suc y ) ) |
| 10 |
|
oveq2 |
|- ( x = A -> ( (/) +o x ) = ( (/) +o A ) ) |
| 11 |
|
id |
|- ( x = A -> x = A ) |
| 12 |
10 11
|
eqeq12d |
|- ( x = A -> ( ( (/) +o x ) = x <-> ( (/) +o A ) = A ) ) |
| 13 |
|
0elon |
|- (/) e. On |
| 14 |
|
oa0 |
|- ( (/) e. On -> ( (/) +o (/) ) = (/) ) |
| 15 |
13 14
|
ax-mp |
|- ( (/) +o (/) ) = (/) |
| 16 |
|
peano1 |
|- (/) e. _om |
| 17 |
|
nnasuc |
|- ( ( (/) e. _om /\ y e. _om ) -> ( (/) +o suc y ) = suc ( (/) +o y ) ) |
| 18 |
16 17
|
mpan |
|- ( y e. _om -> ( (/) +o suc y ) = suc ( (/) +o y ) ) |
| 19 |
|
suceq |
|- ( ( (/) +o y ) = y -> suc ( (/) +o y ) = suc y ) |
| 20 |
19
|
eqeq2d |
|- ( ( (/) +o y ) = y -> ( ( (/) +o suc y ) = suc ( (/) +o y ) <-> ( (/) +o suc y ) = suc y ) ) |
| 21 |
18 20
|
syl5ibcom |
|- ( y e. _om -> ( ( (/) +o y ) = y -> ( (/) +o suc y ) = suc y ) ) |
| 22 |
3 6 9 12 15 21
|
finds |
|- ( A e. _om -> ( (/) +o A ) = A ) |