Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = C -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o C ) ) |
2 |
|
oveq2 |
|- ( x = C -> ( B +o x ) = ( B +o C ) ) |
3 |
2
|
oveq2d |
|- ( x = C -> ( A +o ( B +o x ) ) = ( A +o ( B +o C ) ) ) |
4 |
1 3
|
eqeq12d |
|- ( x = C -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
5 |
4
|
imbi2d |
|- ( x = C -> ( ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) ) <-> ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) ) |
6 |
|
oveq2 |
|- ( x = (/) -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o (/) ) ) |
7 |
|
oveq2 |
|- ( x = (/) -> ( B +o x ) = ( B +o (/) ) ) |
8 |
7
|
oveq2d |
|- ( x = (/) -> ( A +o ( B +o x ) ) = ( A +o ( B +o (/) ) ) ) |
9 |
6 8
|
eqeq12d |
|- ( x = (/) -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o (/) ) = ( A +o ( B +o (/) ) ) ) ) |
10 |
|
oveq2 |
|- ( x = y -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o y ) ) |
11 |
|
oveq2 |
|- ( x = y -> ( B +o x ) = ( B +o y ) ) |
12 |
11
|
oveq2d |
|- ( x = y -> ( A +o ( B +o x ) ) = ( A +o ( B +o y ) ) ) |
13 |
10 12
|
eqeq12d |
|- ( x = y -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) ) |
14 |
|
oveq2 |
|- ( x = suc y -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o suc y ) ) |
15 |
|
oveq2 |
|- ( x = suc y -> ( B +o x ) = ( B +o suc y ) ) |
16 |
15
|
oveq2d |
|- ( x = suc y -> ( A +o ( B +o x ) ) = ( A +o ( B +o suc y ) ) ) |
17 |
14 16
|
eqeq12d |
|- ( x = suc y -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) |
18 |
|
nnacl |
|- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) |
19 |
|
nna0 |
|- ( ( A +o B ) e. _om -> ( ( A +o B ) +o (/) ) = ( A +o B ) ) |
20 |
18 19
|
syl |
|- ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o (/) ) = ( A +o B ) ) |
21 |
|
nna0 |
|- ( B e. _om -> ( B +o (/) ) = B ) |
22 |
21
|
oveq2d |
|- ( B e. _om -> ( A +o ( B +o (/) ) ) = ( A +o B ) ) |
23 |
22
|
adantl |
|- ( ( A e. _om /\ B e. _om ) -> ( A +o ( B +o (/) ) ) = ( A +o B ) ) |
24 |
20 23
|
eqtr4d |
|- ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o (/) ) = ( A +o ( B +o (/) ) ) ) |
25 |
|
suceq |
|- ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> suc ( ( A +o B ) +o y ) = suc ( A +o ( B +o y ) ) ) |
26 |
|
nnasuc |
|- ( ( ( A +o B ) e. _om /\ y e. _om ) -> ( ( A +o B ) +o suc y ) = suc ( ( A +o B ) +o y ) ) |
27 |
18 26
|
sylan |
|- ( ( ( A e. _om /\ B e. _om ) /\ y e. _om ) -> ( ( A +o B ) +o suc y ) = suc ( ( A +o B ) +o y ) ) |
28 |
|
nnasuc |
|- ( ( B e. _om /\ y e. _om ) -> ( B +o suc y ) = suc ( B +o y ) ) |
29 |
28
|
oveq2d |
|- ( ( B e. _om /\ y e. _om ) -> ( A +o ( B +o suc y ) ) = ( A +o suc ( B +o y ) ) ) |
30 |
29
|
adantl |
|- ( ( A e. _om /\ ( B e. _om /\ y e. _om ) ) -> ( A +o ( B +o suc y ) ) = ( A +o suc ( B +o y ) ) ) |
31 |
|
nnacl |
|- ( ( B e. _om /\ y e. _om ) -> ( B +o y ) e. _om ) |
32 |
|
nnasuc |
|- ( ( A e. _om /\ ( B +o y ) e. _om ) -> ( A +o suc ( B +o y ) ) = suc ( A +o ( B +o y ) ) ) |
33 |
31 32
|
sylan2 |
|- ( ( A e. _om /\ ( B e. _om /\ y e. _om ) ) -> ( A +o suc ( B +o y ) ) = suc ( A +o ( B +o y ) ) ) |
34 |
30 33
|
eqtrd |
|- ( ( A e. _om /\ ( B e. _om /\ y e. _om ) ) -> ( A +o ( B +o suc y ) ) = suc ( A +o ( B +o y ) ) ) |
35 |
34
|
anassrs |
|- ( ( ( A e. _om /\ B e. _om ) /\ y e. _om ) -> ( A +o ( B +o suc y ) ) = suc ( A +o ( B +o y ) ) ) |
36 |
27 35
|
eqeq12d |
|- ( ( ( A e. _om /\ B e. _om ) /\ y e. _om ) -> ( ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) <-> suc ( ( A +o B ) +o y ) = suc ( A +o ( B +o y ) ) ) ) |
37 |
25 36
|
syl5ibr |
|- ( ( ( A e. _om /\ B e. _om ) /\ y e. _om ) -> ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) |
38 |
37
|
expcom |
|- ( y e. _om -> ( ( A e. _om /\ B e. _om ) -> ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) ) |
39 |
9 13 17 24 38
|
finds2 |
|- ( x e. _om -> ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) ) ) |
40 |
5 39
|
vtoclga |
|- ( C e. _om -> ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
41 |
40
|
com12 |
|- ( ( A e. _om /\ B e. _om ) -> ( C e. _om -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
42 |
41
|
3impia |
|- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) |