| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = C -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o C ) ) |
| 2 |
|
oveq2 |
|- ( x = C -> ( B +o x ) = ( B +o C ) ) |
| 3 |
2
|
oveq2d |
|- ( x = C -> ( A +o ( B +o x ) ) = ( A +o ( B +o C ) ) ) |
| 4 |
1 3
|
eqeq12d |
|- ( x = C -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
| 5 |
4
|
imbi2d |
|- ( x = C -> ( ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) ) <-> ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) ) |
| 6 |
|
oveq2 |
|- ( x = (/) -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o (/) ) ) |
| 7 |
|
oveq2 |
|- ( x = (/) -> ( B +o x ) = ( B +o (/) ) ) |
| 8 |
7
|
oveq2d |
|- ( x = (/) -> ( A +o ( B +o x ) ) = ( A +o ( B +o (/) ) ) ) |
| 9 |
6 8
|
eqeq12d |
|- ( x = (/) -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o (/) ) = ( A +o ( B +o (/) ) ) ) ) |
| 10 |
|
oveq2 |
|- ( x = y -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o y ) ) |
| 11 |
|
oveq2 |
|- ( x = y -> ( B +o x ) = ( B +o y ) ) |
| 12 |
11
|
oveq2d |
|- ( x = y -> ( A +o ( B +o x ) ) = ( A +o ( B +o y ) ) ) |
| 13 |
10 12
|
eqeq12d |
|- ( x = y -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) ) |
| 14 |
|
oveq2 |
|- ( x = suc y -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o suc y ) ) |
| 15 |
|
oveq2 |
|- ( x = suc y -> ( B +o x ) = ( B +o suc y ) ) |
| 16 |
15
|
oveq2d |
|- ( x = suc y -> ( A +o ( B +o x ) ) = ( A +o ( B +o suc y ) ) ) |
| 17 |
14 16
|
eqeq12d |
|- ( x = suc y -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) |
| 18 |
|
nnacl |
|- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) |
| 19 |
|
nna0 |
|- ( ( A +o B ) e. _om -> ( ( A +o B ) +o (/) ) = ( A +o B ) ) |
| 20 |
18 19
|
syl |
|- ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o (/) ) = ( A +o B ) ) |
| 21 |
|
nna0 |
|- ( B e. _om -> ( B +o (/) ) = B ) |
| 22 |
21
|
oveq2d |
|- ( B e. _om -> ( A +o ( B +o (/) ) ) = ( A +o B ) ) |
| 23 |
22
|
adantl |
|- ( ( A e. _om /\ B e. _om ) -> ( A +o ( B +o (/) ) ) = ( A +o B ) ) |
| 24 |
20 23
|
eqtr4d |
|- ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o (/) ) = ( A +o ( B +o (/) ) ) ) |
| 25 |
|
suceq |
|- ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> suc ( ( A +o B ) +o y ) = suc ( A +o ( B +o y ) ) ) |
| 26 |
|
nnasuc |
|- ( ( ( A +o B ) e. _om /\ y e. _om ) -> ( ( A +o B ) +o suc y ) = suc ( ( A +o B ) +o y ) ) |
| 27 |
18 26
|
sylan |
|- ( ( ( A e. _om /\ B e. _om ) /\ y e. _om ) -> ( ( A +o B ) +o suc y ) = suc ( ( A +o B ) +o y ) ) |
| 28 |
|
nnasuc |
|- ( ( B e. _om /\ y e. _om ) -> ( B +o suc y ) = suc ( B +o y ) ) |
| 29 |
28
|
oveq2d |
|- ( ( B e. _om /\ y e. _om ) -> ( A +o ( B +o suc y ) ) = ( A +o suc ( B +o y ) ) ) |
| 30 |
29
|
adantl |
|- ( ( A e. _om /\ ( B e. _om /\ y e. _om ) ) -> ( A +o ( B +o suc y ) ) = ( A +o suc ( B +o y ) ) ) |
| 31 |
|
nnacl |
|- ( ( B e. _om /\ y e. _om ) -> ( B +o y ) e. _om ) |
| 32 |
|
nnasuc |
|- ( ( A e. _om /\ ( B +o y ) e. _om ) -> ( A +o suc ( B +o y ) ) = suc ( A +o ( B +o y ) ) ) |
| 33 |
31 32
|
sylan2 |
|- ( ( A e. _om /\ ( B e. _om /\ y e. _om ) ) -> ( A +o suc ( B +o y ) ) = suc ( A +o ( B +o y ) ) ) |
| 34 |
30 33
|
eqtrd |
|- ( ( A e. _om /\ ( B e. _om /\ y e. _om ) ) -> ( A +o ( B +o suc y ) ) = suc ( A +o ( B +o y ) ) ) |
| 35 |
34
|
anassrs |
|- ( ( ( A e. _om /\ B e. _om ) /\ y e. _om ) -> ( A +o ( B +o suc y ) ) = suc ( A +o ( B +o y ) ) ) |
| 36 |
27 35
|
eqeq12d |
|- ( ( ( A e. _om /\ B e. _om ) /\ y e. _om ) -> ( ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) <-> suc ( ( A +o B ) +o y ) = suc ( A +o ( B +o y ) ) ) ) |
| 37 |
25 36
|
imbitrrid |
|- ( ( ( A e. _om /\ B e. _om ) /\ y e. _om ) -> ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) |
| 38 |
37
|
expcom |
|- ( y e. _om -> ( ( A e. _om /\ B e. _om ) -> ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) ) |
| 39 |
9 13 17 24 38
|
finds2 |
|- ( x e. _om -> ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) ) ) |
| 40 |
5 39
|
vtoclga |
|- ( C e. _om -> ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
| 41 |
40
|
com12 |
|- ( ( A e. _om /\ B e. _om ) -> ( C e. _om -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
| 42 |
41
|
3impia |
|- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) |