Step |
Hyp |
Ref |
Expression |
1 |
|
nnaword |
|- ( ( B e. _om /\ C e. _om /\ A e. _om ) -> ( B C_ C <-> ( A +o B ) C_ ( A +o C ) ) ) |
2 |
1
|
3comr |
|- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( B C_ C <-> ( A +o B ) C_ ( A +o C ) ) ) |
3 |
|
nnaword |
|- ( ( C e. _om /\ B e. _om /\ A e. _om ) -> ( C C_ B <-> ( A +o C ) C_ ( A +o B ) ) ) |
4 |
3
|
3com13 |
|- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( C C_ B <-> ( A +o C ) C_ ( A +o B ) ) ) |
5 |
2 4
|
anbi12d |
|- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( B C_ C /\ C C_ B ) <-> ( ( A +o B ) C_ ( A +o C ) /\ ( A +o C ) C_ ( A +o B ) ) ) ) |
6 |
5
|
bicomd |
|- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( ( A +o B ) C_ ( A +o C ) /\ ( A +o C ) C_ ( A +o B ) ) <-> ( B C_ C /\ C C_ B ) ) ) |
7 |
|
eqss |
|- ( ( A +o B ) = ( A +o C ) <-> ( ( A +o B ) C_ ( A +o C ) /\ ( A +o C ) C_ ( A +o B ) ) ) |
8 |
|
eqss |
|- ( B = C <-> ( B C_ C /\ C C_ B ) ) |
9 |
6 7 8
|
3bitr4g |
|- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( A +o B ) = ( A +o C ) <-> B = C ) ) |