Description: _om is closed under addition. Inference form of nnacl . (Contributed by Scott Fenton, 20-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nncli.1 | |- A e. _om |
|
| nncli.2 | |- B e. _om |
||
| Assertion | nnacli | |- ( A +o B ) e. _om |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncli.1 | |- A e. _om |
|
| 2 | nncli.2 | |- B e. _om |
|
| 3 | nnacl | |- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) |
|
| 4 | 1 2 3 | mp2an | |- ( A +o B ) e. _om |