Metamath Proof Explorer


Theorem nnacli

Description: _om is closed under addition. Inference form of nnacl . (Contributed by Scott Fenton, 20-Apr-2012)

Ref Expression
Hypotheses nncli.1
|- A e. _om
nncli.2
|- B e. _om
Assertion nnacli
|- ( A +o B ) e. _om

Proof

Step Hyp Ref Expression
1 nncli.1
 |-  A e. _om
2 nncli.2
 |-  B e. _om
3 nnacl
 |-  ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om )
4 1 2 3 mp2an
 |-  ( A +o B ) e. _om