| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( x = A -> ( x +o B ) = ( A +o B ) ) | 
						
							| 2 |  | oveq2 |  |-  ( x = A -> ( B +o x ) = ( B +o A ) ) | 
						
							| 3 | 1 2 | eqeq12d |  |-  ( x = A -> ( ( x +o B ) = ( B +o x ) <-> ( A +o B ) = ( B +o A ) ) ) | 
						
							| 4 | 3 | imbi2d |  |-  ( x = A -> ( ( B e. _om -> ( x +o B ) = ( B +o x ) ) <-> ( B e. _om -> ( A +o B ) = ( B +o A ) ) ) ) | 
						
							| 5 |  | oveq1 |  |-  ( x = (/) -> ( x +o B ) = ( (/) +o B ) ) | 
						
							| 6 |  | oveq2 |  |-  ( x = (/) -> ( B +o x ) = ( B +o (/) ) ) | 
						
							| 7 | 5 6 | eqeq12d |  |-  ( x = (/) -> ( ( x +o B ) = ( B +o x ) <-> ( (/) +o B ) = ( B +o (/) ) ) ) | 
						
							| 8 |  | oveq1 |  |-  ( x = y -> ( x +o B ) = ( y +o B ) ) | 
						
							| 9 |  | oveq2 |  |-  ( x = y -> ( B +o x ) = ( B +o y ) ) | 
						
							| 10 | 8 9 | eqeq12d |  |-  ( x = y -> ( ( x +o B ) = ( B +o x ) <-> ( y +o B ) = ( B +o y ) ) ) | 
						
							| 11 |  | oveq1 |  |-  ( x = suc y -> ( x +o B ) = ( suc y +o B ) ) | 
						
							| 12 |  | oveq2 |  |-  ( x = suc y -> ( B +o x ) = ( B +o suc y ) ) | 
						
							| 13 | 11 12 | eqeq12d |  |-  ( x = suc y -> ( ( x +o B ) = ( B +o x ) <-> ( suc y +o B ) = ( B +o suc y ) ) ) | 
						
							| 14 |  | nna0r |  |-  ( B e. _om -> ( (/) +o B ) = B ) | 
						
							| 15 |  | nna0 |  |-  ( B e. _om -> ( B +o (/) ) = B ) | 
						
							| 16 | 14 15 | eqtr4d |  |-  ( B e. _om -> ( (/) +o B ) = ( B +o (/) ) ) | 
						
							| 17 |  | suceq |  |-  ( ( y +o B ) = ( B +o y ) -> suc ( y +o B ) = suc ( B +o y ) ) | 
						
							| 18 |  | oveq2 |  |-  ( x = B -> ( suc y +o x ) = ( suc y +o B ) ) | 
						
							| 19 |  | oveq2 |  |-  ( x = B -> ( y +o x ) = ( y +o B ) ) | 
						
							| 20 |  | suceq |  |-  ( ( y +o x ) = ( y +o B ) -> suc ( y +o x ) = suc ( y +o B ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( x = B -> suc ( y +o x ) = suc ( y +o B ) ) | 
						
							| 22 | 18 21 | eqeq12d |  |-  ( x = B -> ( ( suc y +o x ) = suc ( y +o x ) <-> ( suc y +o B ) = suc ( y +o B ) ) ) | 
						
							| 23 | 22 | imbi2d |  |-  ( x = B -> ( ( y e. _om -> ( suc y +o x ) = suc ( y +o x ) ) <-> ( y e. _om -> ( suc y +o B ) = suc ( y +o B ) ) ) ) | 
						
							| 24 |  | oveq2 |  |-  ( x = (/) -> ( suc y +o x ) = ( suc y +o (/) ) ) | 
						
							| 25 |  | oveq2 |  |-  ( x = (/) -> ( y +o x ) = ( y +o (/) ) ) | 
						
							| 26 |  | suceq |  |-  ( ( y +o x ) = ( y +o (/) ) -> suc ( y +o x ) = suc ( y +o (/) ) ) | 
						
							| 27 | 25 26 | syl |  |-  ( x = (/) -> suc ( y +o x ) = suc ( y +o (/) ) ) | 
						
							| 28 | 24 27 | eqeq12d |  |-  ( x = (/) -> ( ( suc y +o x ) = suc ( y +o x ) <-> ( suc y +o (/) ) = suc ( y +o (/) ) ) ) | 
						
							| 29 |  | oveq2 |  |-  ( x = z -> ( suc y +o x ) = ( suc y +o z ) ) | 
						
							| 30 |  | oveq2 |  |-  ( x = z -> ( y +o x ) = ( y +o z ) ) | 
						
							| 31 |  | suceq |  |-  ( ( y +o x ) = ( y +o z ) -> suc ( y +o x ) = suc ( y +o z ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( x = z -> suc ( y +o x ) = suc ( y +o z ) ) | 
						
							| 33 | 29 32 | eqeq12d |  |-  ( x = z -> ( ( suc y +o x ) = suc ( y +o x ) <-> ( suc y +o z ) = suc ( y +o z ) ) ) | 
						
							| 34 |  | oveq2 |  |-  ( x = suc z -> ( suc y +o x ) = ( suc y +o suc z ) ) | 
						
							| 35 |  | oveq2 |  |-  ( x = suc z -> ( y +o x ) = ( y +o suc z ) ) | 
						
							| 36 |  | suceq |  |-  ( ( y +o x ) = ( y +o suc z ) -> suc ( y +o x ) = suc ( y +o suc z ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( x = suc z -> suc ( y +o x ) = suc ( y +o suc z ) ) | 
						
							| 38 | 34 37 | eqeq12d |  |-  ( x = suc z -> ( ( suc y +o x ) = suc ( y +o x ) <-> ( suc y +o suc z ) = suc ( y +o suc z ) ) ) | 
						
							| 39 |  | peano2 |  |-  ( y e. _om -> suc y e. _om ) | 
						
							| 40 |  | nna0 |  |-  ( suc y e. _om -> ( suc y +o (/) ) = suc y ) | 
						
							| 41 | 39 40 | syl |  |-  ( y e. _om -> ( suc y +o (/) ) = suc y ) | 
						
							| 42 |  | nna0 |  |-  ( y e. _om -> ( y +o (/) ) = y ) | 
						
							| 43 |  | suceq |  |-  ( ( y +o (/) ) = y -> suc ( y +o (/) ) = suc y ) | 
						
							| 44 | 42 43 | syl |  |-  ( y e. _om -> suc ( y +o (/) ) = suc y ) | 
						
							| 45 | 41 44 | eqtr4d |  |-  ( y e. _om -> ( suc y +o (/) ) = suc ( y +o (/) ) ) | 
						
							| 46 |  | suceq |  |-  ( ( suc y +o z ) = suc ( y +o z ) -> suc ( suc y +o z ) = suc suc ( y +o z ) ) | 
						
							| 47 |  | nnasuc |  |-  ( ( suc y e. _om /\ z e. _om ) -> ( suc y +o suc z ) = suc ( suc y +o z ) ) | 
						
							| 48 | 39 47 | sylan |  |-  ( ( y e. _om /\ z e. _om ) -> ( suc y +o suc z ) = suc ( suc y +o z ) ) | 
						
							| 49 |  | nnasuc |  |-  ( ( y e. _om /\ z e. _om ) -> ( y +o suc z ) = suc ( y +o z ) ) | 
						
							| 50 |  | suceq |  |-  ( ( y +o suc z ) = suc ( y +o z ) -> suc ( y +o suc z ) = suc suc ( y +o z ) ) | 
						
							| 51 | 49 50 | syl |  |-  ( ( y e. _om /\ z e. _om ) -> suc ( y +o suc z ) = suc suc ( y +o z ) ) | 
						
							| 52 | 48 51 | eqeq12d |  |-  ( ( y e. _om /\ z e. _om ) -> ( ( suc y +o suc z ) = suc ( y +o suc z ) <-> suc ( suc y +o z ) = suc suc ( y +o z ) ) ) | 
						
							| 53 | 46 52 | imbitrrid |  |-  ( ( y e. _om /\ z e. _om ) -> ( ( suc y +o z ) = suc ( y +o z ) -> ( suc y +o suc z ) = suc ( y +o suc z ) ) ) | 
						
							| 54 | 53 | expcom |  |-  ( z e. _om -> ( y e. _om -> ( ( suc y +o z ) = suc ( y +o z ) -> ( suc y +o suc z ) = suc ( y +o suc z ) ) ) ) | 
						
							| 55 | 28 33 38 45 54 | finds2 |  |-  ( x e. _om -> ( y e. _om -> ( suc y +o x ) = suc ( y +o x ) ) ) | 
						
							| 56 | 23 55 | vtoclga |  |-  ( B e. _om -> ( y e. _om -> ( suc y +o B ) = suc ( y +o B ) ) ) | 
						
							| 57 | 56 | imp |  |-  ( ( B e. _om /\ y e. _om ) -> ( suc y +o B ) = suc ( y +o B ) ) | 
						
							| 58 |  | nnasuc |  |-  ( ( B e. _om /\ y e. _om ) -> ( B +o suc y ) = suc ( B +o y ) ) | 
						
							| 59 | 57 58 | eqeq12d |  |-  ( ( B e. _om /\ y e. _om ) -> ( ( suc y +o B ) = ( B +o suc y ) <-> suc ( y +o B ) = suc ( B +o y ) ) ) | 
						
							| 60 | 17 59 | imbitrrid |  |-  ( ( B e. _om /\ y e. _om ) -> ( ( y +o B ) = ( B +o y ) -> ( suc y +o B ) = ( B +o suc y ) ) ) | 
						
							| 61 | 60 | expcom |  |-  ( y e. _om -> ( B e. _om -> ( ( y +o B ) = ( B +o y ) -> ( suc y +o B ) = ( B +o suc y ) ) ) ) | 
						
							| 62 | 7 10 13 16 61 | finds2 |  |-  ( x e. _om -> ( B e. _om -> ( x +o B ) = ( B +o x ) ) ) | 
						
							| 63 | 4 62 | vtoclga |  |-  ( A e. _om -> ( B e. _om -> ( A +o B ) = ( B +o A ) ) ) | 
						
							| 64 | 63 | imp |  |-  ( ( A e. _om /\ B e. _om ) -> ( A +o B ) = ( B +o A ) ) |