| Step | Hyp | Ref | Expression | 
						
							| 1 |  | djueq2 |  |-  ( x = B -> ( A |_| x ) = ( A |_| B ) ) | 
						
							| 2 |  | oveq2 |  |-  ( x = B -> ( A +o x ) = ( A +o B ) ) | 
						
							| 3 | 1 2 | breq12d |  |-  ( x = B -> ( ( A |_| x ) ~~ ( A +o x ) <-> ( A |_| B ) ~~ ( A +o B ) ) ) | 
						
							| 4 | 3 | imbi2d |  |-  ( x = B -> ( ( A e. _om -> ( A |_| x ) ~~ ( A +o x ) ) <-> ( A e. _om -> ( A |_| B ) ~~ ( A +o B ) ) ) ) | 
						
							| 5 |  | djueq2 |  |-  ( x = (/) -> ( A |_| x ) = ( A |_| (/) ) ) | 
						
							| 6 |  | oveq2 |  |-  ( x = (/) -> ( A +o x ) = ( A +o (/) ) ) | 
						
							| 7 | 5 6 | breq12d |  |-  ( x = (/) -> ( ( A |_| x ) ~~ ( A +o x ) <-> ( A |_| (/) ) ~~ ( A +o (/) ) ) ) | 
						
							| 8 |  | djueq2 |  |-  ( x = y -> ( A |_| x ) = ( A |_| y ) ) | 
						
							| 9 |  | oveq2 |  |-  ( x = y -> ( A +o x ) = ( A +o y ) ) | 
						
							| 10 | 8 9 | breq12d |  |-  ( x = y -> ( ( A |_| x ) ~~ ( A +o x ) <-> ( A |_| y ) ~~ ( A +o y ) ) ) | 
						
							| 11 |  | djueq2 |  |-  ( x = suc y -> ( A |_| x ) = ( A |_| suc y ) ) | 
						
							| 12 |  | oveq2 |  |-  ( x = suc y -> ( A +o x ) = ( A +o suc y ) ) | 
						
							| 13 | 11 12 | breq12d |  |-  ( x = suc y -> ( ( A |_| x ) ~~ ( A +o x ) <-> ( A |_| suc y ) ~~ ( A +o suc y ) ) ) | 
						
							| 14 |  | dju0en |  |-  ( A e. _om -> ( A |_| (/) ) ~~ A ) | 
						
							| 15 |  | nna0 |  |-  ( A e. _om -> ( A +o (/) ) = A ) | 
						
							| 16 | 14 15 | breqtrrd |  |-  ( A e. _om -> ( A |_| (/) ) ~~ ( A +o (/) ) ) | 
						
							| 17 |  | 1oex |  |-  1o e. _V | 
						
							| 18 |  | djuassen |  |-  ( ( A e. _om /\ y e. _om /\ 1o e. _V ) -> ( ( A |_| y ) |_| 1o ) ~~ ( A |_| ( y |_| 1o ) ) ) | 
						
							| 19 | 17 18 | mp3an3 |  |-  ( ( A e. _om /\ y e. _om ) -> ( ( A |_| y ) |_| 1o ) ~~ ( A |_| ( y |_| 1o ) ) ) | 
						
							| 20 |  | enrefg |  |-  ( A e. _om -> A ~~ A ) | 
						
							| 21 |  | nnord |  |-  ( y e. _om -> Ord y ) | 
						
							| 22 |  | ordirr |  |-  ( Ord y -> -. y e. y ) | 
						
							| 23 | 21 22 | syl |  |-  ( y e. _om -> -. y e. y ) | 
						
							| 24 |  | dju1en |  |-  ( ( y e. _om /\ -. y e. y ) -> ( y |_| 1o ) ~~ suc y ) | 
						
							| 25 | 23 24 | mpdan |  |-  ( y e. _om -> ( y |_| 1o ) ~~ suc y ) | 
						
							| 26 |  | djuen |  |-  ( ( A ~~ A /\ ( y |_| 1o ) ~~ suc y ) -> ( A |_| ( y |_| 1o ) ) ~~ ( A |_| suc y ) ) | 
						
							| 27 | 20 25 26 | syl2an |  |-  ( ( A e. _om /\ y e. _om ) -> ( A |_| ( y |_| 1o ) ) ~~ ( A |_| suc y ) ) | 
						
							| 28 |  | entr |  |-  ( ( ( ( A |_| y ) |_| 1o ) ~~ ( A |_| ( y |_| 1o ) ) /\ ( A |_| ( y |_| 1o ) ) ~~ ( A |_| suc y ) ) -> ( ( A |_| y ) |_| 1o ) ~~ ( A |_| suc y ) ) | 
						
							| 29 | 19 27 28 | syl2anc |  |-  ( ( A e. _om /\ y e. _om ) -> ( ( A |_| y ) |_| 1o ) ~~ ( A |_| suc y ) ) | 
						
							| 30 | 29 | ensymd |  |-  ( ( A e. _om /\ y e. _om ) -> ( A |_| suc y ) ~~ ( ( A |_| y ) |_| 1o ) ) | 
						
							| 31 | 17 | enref |  |-  1o ~~ 1o | 
						
							| 32 |  | djuen |  |-  ( ( ( A |_| y ) ~~ ( A +o y ) /\ 1o ~~ 1o ) -> ( ( A |_| y ) |_| 1o ) ~~ ( ( A +o y ) |_| 1o ) ) | 
						
							| 33 | 31 32 | mpan2 |  |-  ( ( A |_| y ) ~~ ( A +o y ) -> ( ( A |_| y ) |_| 1o ) ~~ ( ( A +o y ) |_| 1o ) ) | 
						
							| 34 | 33 | a1i |  |-  ( ( A e. _om /\ y e. _om ) -> ( ( A |_| y ) ~~ ( A +o y ) -> ( ( A |_| y ) |_| 1o ) ~~ ( ( A +o y ) |_| 1o ) ) ) | 
						
							| 35 |  | nnacl |  |-  ( ( A e. _om /\ y e. _om ) -> ( A +o y ) e. _om ) | 
						
							| 36 |  | nnord |  |-  ( ( A +o y ) e. _om -> Ord ( A +o y ) ) | 
						
							| 37 |  | ordirr |  |-  ( Ord ( A +o y ) -> -. ( A +o y ) e. ( A +o y ) ) | 
						
							| 38 | 35 36 37 | 3syl |  |-  ( ( A e. _om /\ y e. _om ) -> -. ( A +o y ) e. ( A +o y ) ) | 
						
							| 39 |  | dju1en |  |-  ( ( ( A +o y ) e. _om /\ -. ( A +o y ) e. ( A +o y ) ) -> ( ( A +o y ) |_| 1o ) ~~ suc ( A +o y ) ) | 
						
							| 40 | 35 38 39 | syl2anc |  |-  ( ( A e. _om /\ y e. _om ) -> ( ( A +o y ) |_| 1o ) ~~ suc ( A +o y ) ) | 
						
							| 41 |  | nnasuc |  |-  ( ( A e. _om /\ y e. _om ) -> ( A +o suc y ) = suc ( A +o y ) ) | 
						
							| 42 | 40 41 | breqtrrd |  |-  ( ( A e. _om /\ y e. _om ) -> ( ( A +o y ) |_| 1o ) ~~ ( A +o suc y ) ) | 
						
							| 43 | 34 42 | jctird |  |-  ( ( A e. _om /\ y e. _om ) -> ( ( A |_| y ) ~~ ( A +o y ) -> ( ( ( A |_| y ) |_| 1o ) ~~ ( ( A +o y ) |_| 1o ) /\ ( ( A +o y ) |_| 1o ) ~~ ( A +o suc y ) ) ) ) | 
						
							| 44 |  | entr |  |-  ( ( ( ( A |_| y ) |_| 1o ) ~~ ( ( A +o y ) |_| 1o ) /\ ( ( A +o y ) |_| 1o ) ~~ ( A +o suc y ) ) -> ( ( A |_| y ) |_| 1o ) ~~ ( A +o suc y ) ) | 
						
							| 45 | 43 44 | syl6 |  |-  ( ( A e. _om /\ y e. _om ) -> ( ( A |_| y ) ~~ ( A +o y ) -> ( ( A |_| y ) |_| 1o ) ~~ ( A +o suc y ) ) ) | 
						
							| 46 |  | entr |  |-  ( ( ( A |_| suc y ) ~~ ( ( A |_| y ) |_| 1o ) /\ ( ( A |_| y ) |_| 1o ) ~~ ( A +o suc y ) ) -> ( A |_| suc y ) ~~ ( A +o suc y ) ) | 
						
							| 47 | 30 45 46 | syl6an |  |-  ( ( A e. _om /\ y e. _om ) -> ( ( A |_| y ) ~~ ( A +o y ) -> ( A |_| suc y ) ~~ ( A +o suc y ) ) ) | 
						
							| 48 | 47 | expcom |  |-  ( y e. _om -> ( A e. _om -> ( ( A |_| y ) ~~ ( A +o y ) -> ( A |_| suc y ) ~~ ( A +o suc y ) ) ) ) | 
						
							| 49 | 7 10 13 16 48 | finds2 |  |-  ( x e. _om -> ( A e. _om -> ( A |_| x ) ~~ ( A +o x ) ) ) | 
						
							| 50 | 4 49 | vtoclga |  |-  ( B e. _om -> ( A e. _om -> ( A |_| B ) ~~ ( A +o B ) ) ) | 
						
							| 51 | 50 | impcom |  |-  ( ( A e. _om /\ B e. _om ) -> ( A |_| B ) ~~ ( A +o B ) ) | 
						
							| 52 |  | carden2b |  |-  ( ( A |_| B ) ~~ ( A +o B ) -> ( card ` ( A |_| B ) ) = ( card ` ( A +o B ) ) ) | 
						
							| 53 | 51 52 | syl |  |-  ( ( A e. _om /\ B e. _om ) -> ( card ` ( A |_| B ) ) = ( card ` ( A +o B ) ) ) | 
						
							| 54 |  | nnacl |  |-  ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) | 
						
							| 55 |  | cardnn |  |-  ( ( A +o B ) e. _om -> ( card ` ( A +o B ) ) = ( A +o B ) ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( A e. _om /\ B e. _om ) -> ( card ` ( A +o B ) ) = ( A +o B ) ) | 
						
							| 57 | 53 56 | eqtrd |  |-  ( ( A e. _om /\ B e. _om ) -> ( card ` ( A |_| B ) ) = ( A +o B ) ) |