| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnon |  |-  ( A e. _om -> A e. On ) | 
						
							| 2 |  | nnon |  |-  ( B e. _om -> B e. On ) | 
						
							| 3 |  | onadju |  |-  ( ( A e. On /\ B e. On ) -> ( A +o B ) ~~ ( A |_| B ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A e. _om /\ B e. _om ) -> ( A +o B ) ~~ ( A |_| B ) ) | 
						
							| 5 |  | carden2b |  |-  ( ( A +o B ) ~~ ( A |_| B ) -> ( card ` ( A +o B ) ) = ( card ` ( A |_| B ) ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( A e. _om /\ B e. _om ) -> ( card ` ( A +o B ) ) = ( card ` ( A |_| B ) ) ) | 
						
							| 7 |  | nnacl |  |-  ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) | 
						
							| 8 |  | cardnn |  |-  ( ( A +o B ) e. _om -> ( card ` ( A +o B ) ) = ( A +o B ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( A e. _om /\ B e. _om ) -> ( card ` ( A +o B ) ) = ( A +o B ) ) | 
						
							| 10 | 6 9 | eqtr3d |  |-  ( ( A e. _om /\ B e. _om ) -> ( card ` ( A |_| B ) ) = ( A +o B ) ) |