| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oaword1 |
|- ( ( A e. On /\ B e. On ) -> A C_ ( A +o B ) ) |
| 2 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 3 |
|
ordom |
|- Ord _om |
| 4 |
|
ordtr2 |
|- ( ( Ord A /\ Ord _om ) -> ( ( A C_ ( A +o B ) /\ ( A +o B ) e. _om ) -> A e. _om ) ) |
| 5 |
2 3 4
|
sylancl |
|- ( A e. On -> ( ( A C_ ( A +o B ) /\ ( A +o B ) e. _om ) -> A e. _om ) ) |
| 6 |
5
|
expd |
|- ( A e. On -> ( A C_ ( A +o B ) -> ( ( A +o B ) e. _om -> A e. _om ) ) ) |
| 7 |
6
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( A C_ ( A +o B ) -> ( ( A +o B ) e. _om -> A e. _om ) ) ) |
| 8 |
1 7
|
mpd |
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om -> A e. _om ) ) |
| 9 |
|
oaword2 |
|- ( ( B e. On /\ A e. On ) -> B C_ ( A +o B ) ) |
| 10 |
9
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> B C_ ( A +o B ) ) |
| 11 |
|
eloni |
|- ( B e. On -> Ord B ) |
| 12 |
|
ordtr2 |
|- ( ( Ord B /\ Ord _om ) -> ( ( B C_ ( A +o B ) /\ ( A +o B ) e. _om ) -> B e. _om ) ) |
| 13 |
11 3 12
|
sylancl |
|- ( B e. On -> ( ( B C_ ( A +o B ) /\ ( A +o B ) e. _om ) -> B e. _om ) ) |
| 14 |
13
|
expd |
|- ( B e. On -> ( B C_ ( A +o B ) -> ( ( A +o B ) e. _om -> B e. _om ) ) ) |
| 15 |
14
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( B C_ ( A +o B ) -> ( ( A +o B ) e. _om -> B e. _om ) ) ) |
| 16 |
10 15
|
mpd |
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om -> B e. _om ) ) |
| 17 |
8 16
|
jcad |
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om -> ( A e. _om /\ B e. _om ) ) ) |
| 18 |
|
nnacl |
|- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) |
| 19 |
17 18
|
impbid1 |
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) e. _om <-> ( A e. _om /\ B e. _om ) ) ) |