| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqtr3 |  |-  ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> ( A +o x ) = ( A +o y ) ) | 
						
							| 2 |  | nnacan |  |-  ( ( A e. _om /\ x e. _om /\ y e. _om ) -> ( ( A +o x ) = ( A +o y ) <-> x = y ) ) | 
						
							| 3 | 1 2 | imbitrid |  |-  ( ( A e. _om /\ x e. _om /\ y e. _om ) -> ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) | 
						
							| 4 | 3 | 3expb |  |-  ( ( A e. _om /\ ( x e. _om /\ y e. _om ) ) -> ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) | 
						
							| 5 | 4 | ralrimivva |  |-  ( A e. _om -> A. x e. _om A. y e. _om ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) | 
						
							| 6 |  | oveq2 |  |-  ( x = y -> ( A +o x ) = ( A +o y ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( x = y -> ( ( A +o x ) = B <-> ( A +o y ) = B ) ) | 
						
							| 8 | 7 | rmo4 |  |-  ( E* x e. _om ( A +o x ) = B <-> A. x e. _om A. y e. _om ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) ) | 
						
							| 9 | 5 8 | sylibr |  |-  ( A e. _om -> E* x e. _om ( A +o x ) = B ) |