Metamath Proof Explorer


Theorem nnasmo

Description: There is at most one left additive inverse for natural number addition. (Contributed by Scott Fenton, 17-Oct-2024)

Ref Expression
Assertion nnasmo
|- ( A e. _om -> E* x e. _om ( A +o x ) = B )

Proof

Step Hyp Ref Expression
1 eqtr3
 |-  ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> ( A +o x ) = ( A +o y ) )
2 nnacan
 |-  ( ( A e. _om /\ x e. _om /\ y e. _om ) -> ( ( A +o x ) = ( A +o y ) <-> x = y ) )
3 1 2 syl5ib
 |-  ( ( A e. _om /\ x e. _om /\ y e. _om ) -> ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) )
4 3 3expb
 |-  ( ( A e. _om /\ ( x e. _om /\ y e. _om ) ) -> ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) )
5 4 ralrimivva
 |-  ( A e. _om -> A. x e. _om A. y e. _om ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) )
6 oveq2
 |-  ( x = y -> ( A +o x ) = ( A +o y ) )
7 6 eqeq1d
 |-  ( x = y -> ( ( A +o x ) = B <-> ( A +o y ) = B ) )
8 7 rmo4
 |-  ( E* x e. _om ( A +o x ) = B <-> A. x e. _om A. y e. _om ( ( ( A +o x ) = B /\ ( A +o y ) = B ) -> x = y ) )
9 5 8 sylibr
 |-  ( A e. _om -> E* x e. _om ( A +o x ) = B )