Description: Addition with successor. Theorem 4I(A2) of Enderton p. 79. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnasuc | |- ( ( A e. _om /\ B e. _om ) -> ( A +o suc B ) = suc ( A +o B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | |- ( A e. _om -> A e. On ) |
|
| 2 | onasuc | |- ( ( A e. On /\ B e. _om ) -> ( A +o suc B ) = suc ( A +o B ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. _om /\ B e. _om ) -> ( A +o suc B ) = suc ( A +o B ) ) |