Description: Addition with successor. Theorem 4I(A2) of Enderton p. 79. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 14-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nnasuc | |- ( ( A e. _om /\ B e. _om ) -> ( A +o suc B ) = suc ( A +o B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon | |- ( A e. _om -> A e. On ) |
|
2 | onasuc | |- ( ( A e. On /\ B e. _om ) -> ( A +o suc B ) = suc ( A +o B ) ) |
|
3 | 1 2 | sylan | |- ( ( A e. _om /\ B e. _om ) -> ( A +o suc B ) = suc ( A +o B ) ) |