| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( y = B -> ( A +o y ) = ( A +o B ) ) |
| 2 |
1
|
sseq2d |
|- ( y = B -> ( B C_ ( A +o y ) <-> B C_ ( A +o B ) ) ) |
| 3 |
|
simplr |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> B e. _om ) |
| 4 |
|
nnon |
|- ( B e. _om -> B e. On ) |
| 5 |
3 4
|
syl |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> B e. On ) |
| 6 |
|
simpll |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> A e. _om ) |
| 7 |
|
nnaword2 |
|- ( ( B e. _om /\ A e. _om ) -> B C_ ( A +o B ) ) |
| 8 |
3 6 7
|
syl2anc |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> B C_ ( A +o B ) ) |
| 9 |
2 5 8
|
elrabd |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> B e. { y e. On | B C_ ( A +o y ) } ) |
| 10 |
|
intss1 |
|- ( B e. { y e. On | B C_ ( A +o y ) } -> |^| { y e. On | B C_ ( A +o y ) } C_ B ) |
| 11 |
9 10
|
syl |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> |^| { y e. On | B C_ ( A +o y ) } C_ B ) |
| 12 |
|
ssrab2 |
|- { y e. On | B C_ ( A +o y ) } C_ On |
| 13 |
9
|
ne0d |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> { y e. On | B C_ ( A +o y ) } =/= (/) ) |
| 14 |
|
oninton |
|- ( ( { y e. On | B C_ ( A +o y ) } C_ On /\ { y e. On | B C_ ( A +o y ) } =/= (/) ) -> |^| { y e. On | B C_ ( A +o y ) } e. On ) |
| 15 |
12 13 14
|
sylancr |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> |^| { y e. On | B C_ ( A +o y ) } e. On ) |
| 16 |
|
eloni |
|- ( |^| { y e. On | B C_ ( A +o y ) } e. On -> Ord |^| { y e. On | B C_ ( A +o y ) } ) |
| 17 |
15 16
|
syl |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> Ord |^| { y e. On | B C_ ( A +o y ) } ) |
| 18 |
|
ordom |
|- Ord _om |
| 19 |
|
ordtr2 |
|- ( ( Ord |^| { y e. On | B C_ ( A +o y ) } /\ Ord _om ) -> ( ( |^| { y e. On | B C_ ( A +o y ) } C_ B /\ B e. _om ) -> |^| { y e. On | B C_ ( A +o y ) } e. _om ) ) |
| 20 |
17 18 19
|
sylancl |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( ( |^| { y e. On | B C_ ( A +o y ) } C_ B /\ B e. _om ) -> |^| { y e. On | B C_ ( A +o y ) } e. _om ) ) |
| 21 |
11 3 20
|
mp2and |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> |^| { y e. On | B C_ ( A +o y ) } e. _om ) |
| 22 |
|
nna0 |
|- ( A e. _om -> ( A +o (/) ) = A ) |
| 23 |
22
|
ad2antrr |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( A +o (/) ) = A ) |
| 24 |
|
simpr |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> A C_ B ) |
| 25 |
23 24
|
eqsstrd |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( A +o (/) ) C_ B ) |
| 26 |
|
oveq2 |
|- ( |^| { y e. On | B C_ ( A +o y ) } = (/) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) = ( A +o (/) ) ) |
| 27 |
26
|
sseq1d |
|- ( |^| { y e. On | B C_ ( A +o y ) } = (/) -> ( ( A +o |^| { y e. On | B C_ ( A +o y ) } ) C_ B <-> ( A +o (/) ) C_ B ) ) |
| 28 |
25 27
|
syl5ibrcom |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( |^| { y e. On | B C_ ( A +o y ) } = (/) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) C_ B ) ) |
| 29 |
|
simprr |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> |^| { y e. On | B C_ ( A +o y ) } = suc x ) |
| 30 |
29
|
oveq2d |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) = ( A +o suc x ) ) |
| 31 |
6
|
adantr |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> A e. _om ) |
| 32 |
|
simprl |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> x e. _om ) |
| 33 |
|
nnasuc |
|- ( ( A e. _om /\ x e. _om ) -> ( A +o suc x ) = suc ( A +o x ) ) |
| 34 |
31 32 33
|
syl2anc |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( A +o suc x ) = suc ( A +o x ) ) |
| 35 |
30 34
|
eqtrd |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) = suc ( A +o x ) ) |
| 36 |
|
nnord |
|- ( B e. _om -> Ord B ) |
| 37 |
3 36
|
syl |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> Ord B ) |
| 38 |
37
|
adantr |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> Ord B ) |
| 39 |
|
nnon |
|- ( x e. _om -> x e. On ) |
| 40 |
39
|
adantr |
|- ( ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) -> x e. On ) |
| 41 |
|
vex |
|- x e. _V |
| 42 |
41
|
sucid |
|- x e. suc x |
| 43 |
|
simpr |
|- ( ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) -> |^| { y e. On | B C_ ( A +o y ) } = suc x ) |
| 44 |
42 43
|
eleqtrrid |
|- ( ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) -> x e. |^| { y e. On | B C_ ( A +o y ) } ) |
| 45 |
|
oveq2 |
|- ( y = x -> ( A +o y ) = ( A +o x ) ) |
| 46 |
45
|
sseq2d |
|- ( y = x -> ( B C_ ( A +o y ) <-> B C_ ( A +o x ) ) ) |
| 47 |
46
|
onnminsb |
|- ( x e. On -> ( x e. |^| { y e. On | B C_ ( A +o y ) } -> -. B C_ ( A +o x ) ) ) |
| 48 |
40 44 47
|
sylc |
|- ( ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) -> -. B C_ ( A +o x ) ) |
| 49 |
48
|
adantl |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> -. B C_ ( A +o x ) ) |
| 50 |
|
nnacl |
|- ( ( A e. _om /\ x e. _om ) -> ( A +o x ) e. _om ) |
| 51 |
31 32 50
|
syl2anc |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( A +o x ) e. _om ) |
| 52 |
|
nnord |
|- ( ( A +o x ) e. _om -> Ord ( A +o x ) ) |
| 53 |
51 52
|
syl |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> Ord ( A +o x ) ) |
| 54 |
|
ordtri1 |
|- ( ( Ord B /\ Ord ( A +o x ) ) -> ( B C_ ( A +o x ) <-> -. ( A +o x ) e. B ) ) |
| 55 |
38 53 54
|
syl2anc |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( B C_ ( A +o x ) <-> -. ( A +o x ) e. B ) ) |
| 56 |
55
|
con2bid |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( ( A +o x ) e. B <-> -. B C_ ( A +o x ) ) ) |
| 57 |
49 56
|
mpbird |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( A +o x ) e. B ) |
| 58 |
|
ordsucss |
|- ( Ord B -> ( ( A +o x ) e. B -> suc ( A +o x ) C_ B ) ) |
| 59 |
38 57 58
|
sylc |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> suc ( A +o x ) C_ B ) |
| 60 |
35 59
|
eqsstrd |
|- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) C_ B ) |
| 61 |
60
|
rexlimdvaa |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( E. x e. _om |^| { y e. On | B C_ ( A +o y ) } = suc x -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) C_ B ) ) |
| 62 |
|
nn0suc |
|- ( |^| { y e. On | B C_ ( A +o y ) } e. _om -> ( |^| { y e. On | B C_ ( A +o y ) } = (/) \/ E. x e. _om |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) |
| 63 |
21 62
|
syl |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( |^| { y e. On | B C_ ( A +o y ) } = (/) \/ E. x e. _om |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) |
| 64 |
28 61 63
|
mpjaod |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) C_ B ) |
| 65 |
|
onint |
|- ( ( { y e. On | B C_ ( A +o y ) } C_ On /\ { y e. On | B C_ ( A +o y ) } =/= (/) ) -> |^| { y e. On | B C_ ( A +o y ) } e. { y e. On | B C_ ( A +o y ) } ) |
| 66 |
12 13 65
|
sylancr |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> |^| { y e. On | B C_ ( A +o y ) } e. { y e. On | B C_ ( A +o y ) } ) |
| 67 |
|
nfrab1 |
|- F/_ y { y e. On | B C_ ( A +o y ) } |
| 68 |
67
|
nfint |
|- F/_ y |^| { y e. On | B C_ ( A +o y ) } |
| 69 |
|
nfcv |
|- F/_ y On |
| 70 |
|
nfcv |
|- F/_ y B |
| 71 |
|
nfcv |
|- F/_ y A |
| 72 |
|
nfcv |
|- F/_ y +o |
| 73 |
71 72 68
|
nfov |
|- F/_ y ( A +o |^| { y e. On | B C_ ( A +o y ) } ) |
| 74 |
70 73
|
nfss |
|- F/ y B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) |
| 75 |
|
oveq2 |
|- ( y = |^| { y e. On | B C_ ( A +o y ) } -> ( A +o y ) = ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) |
| 76 |
75
|
sseq2d |
|- ( y = |^| { y e. On | B C_ ( A +o y ) } -> ( B C_ ( A +o y ) <-> B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) ) |
| 77 |
68 69 74 76
|
elrabf |
|- ( |^| { y e. On | B C_ ( A +o y ) } e. { y e. On | B C_ ( A +o y ) } <-> ( |^| { y e. On | B C_ ( A +o y ) } e. On /\ B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) ) |
| 78 |
77
|
simprbi |
|- ( |^| { y e. On | B C_ ( A +o y ) } e. { y e. On | B C_ ( A +o y ) } -> B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) |
| 79 |
66 78
|
syl |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) |
| 80 |
64 79
|
eqssd |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) = B ) |
| 81 |
|
oveq2 |
|- ( x = |^| { y e. On | B C_ ( A +o y ) } -> ( A +o x ) = ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) |
| 82 |
81
|
eqeq1d |
|- ( x = |^| { y e. On | B C_ ( A +o y ) } -> ( ( A +o x ) = B <-> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) = B ) ) |
| 83 |
82
|
rspcev |
|- ( ( |^| { y e. On | B C_ ( A +o y ) } e. _om /\ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) = B ) -> E. x e. _om ( A +o x ) = B ) |
| 84 |
21 80 83
|
syl2anc |
|- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> E. x e. _om ( A +o x ) = B ) |
| 85 |
84
|
ex |
|- ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> E. x e. _om ( A +o x ) = B ) ) |
| 86 |
|
nnaword1 |
|- ( ( A e. _om /\ x e. _om ) -> A C_ ( A +o x ) ) |
| 87 |
86
|
adantlr |
|- ( ( ( A e. _om /\ B e. _om ) /\ x e. _om ) -> A C_ ( A +o x ) ) |
| 88 |
|
sseq2 |
|- ( ( A +o x ) = B -> ( A C_ ( A +o x ) <-> A C_ B ) ) |
| 89 |
87 88
|
syl5ibcom |
|- ( ( ( A e. _om /\ B e. _om ) /\ x e. _om ) -> ( ( A +o x ) = B -> A C_ B ) ) |
| 90 |
89
|
rexlimdva |
|- ( ( A e. _om /\ B e. _om ) -> ( E. x e. _om ( A +o x ) = B -> A C_ B ) ) |
| 91 |
85 90
|
impbid |
|- ( ( A e. _om /\ B e. _om ) -> ( A C_ B <-> E. x e. _om ( A +o x ) = B ) ) |