Description: Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nncan | |- ( ( A e. CC /\ B e. CC ) -> ( A - ( A - B ) ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsub2 | |- ( ( A e. CC /\ A e. CC /\ B e. CC ) -> ( A - ( A - B ) ) = ( A + ( B - A ) ) ) |
|
| 2 | 1 | 3anidm12 | |- ( ( A e. CC /\ B e. CC ) -> ( A - ( A - B ) ) = ( A + ( B - A ) ) ) |
| 3 | pncan3 | |- ( ( A e. CC /\ B e. CC ) -> ( A + ( B - A ) ) = B ) |
|
| 4 | 2 3 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( A - ( A - B ) ) = B ) |