Metamath Proof Explorer


Theorem nncansd

Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Hypotheses nncansd.1
|- ( ph -> A e. No )
nncansd.2
|- ( ph -> B e. No )
Assertion nncansd
|- ( ph -> ( A -s ( A -s B ) ) = B )

Proof

Step Hyp Ref Expression
1 nncansd.1
 |-  ( ph -> A e. No )
2 nncansd.2
 |-  ( ph -> B e. No )
3 1 1 2 subsubs2d
 |-  ( ph -> ( A -s ( A -s B ) ) = ( A +s ( B -s A ) ) )
4 pncan3s
 |-  ( ( A e. No /\ B e. No ) -> ( A +s ( B -s A ) ) = B )
5 1 2 4 syl2anc
 |-  ( ph -> ( A +s ( B -s A ) ) = B )
6 3 5 eqtrd
 |-  ( ph -> ( A -s ( A -s B ) ) = B )