Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nncansd.1 | |- ( ph -> A e. No ) |
|
nncansd.2 | |- ( ph -> B e. No ) |
||
Assertion | nncansd | |- ( ph -> ( A -s ( A -s B ) ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncansd.1 | |- ( ph -> A e. No ) |
|
2 | nncansd.2 | |- ( ph -> B e. No ) |
|
3 | 1 1 2 | subsubs2d | |- ( ph -> ( A -s ( A -s B ) ) = ( A +s ( B -s A ) ) ) |
4 | pncan3s | |- ( ( A e. No /\ B e. No ) -> ( A +s ( B -s A ) ) = B ) |
|
5 | 1 2 4 | syl2anc | |- ( ph -> ( A +s ( B -s A ) ) = B ) |
6 | 3 5 | eqtrd | |- ( ph -> ( A -s ( A -s B ) ) = B ) |