Metamath Proof Explorer


Theorem nncn

Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999)

Ref Expression
Assertion nncn
|- ( A e. NN -> A e. CC )

Proof

Step Hyp Ref Expression
1 nnsscn
 |-  NN C_ CC
2 1 sseli
 |-  ( A e. NN -> A e. CC )