| Step |
Hyp |
Ref |
Expression |
| 1 |
|
risset |
|- ( ( B / A ) e. NN <-> E. x e. NN x = ( B / A ) ) |
| 2 |
|
eqcom |
|- ( x = ( B / A ) <-> ( B / A ) = x ) |
| 3 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
| 4 |
3
|
ad2antlr |
|- ( ( ( A e. NN /\ B e. NN ) /\ x e. NN ) -> B e. CC ) |
| 5 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
| 6 |
5
|
ad2antrr |
|- ( ( ( A e. NN /\ B e. NN ) /\ x e. NN ) -> A e. CC ) |
| 7 |
|
nncn |
|- ( x e. NN -> x e. CC ) |
| 8 |
7
|
adantl |
|- ( ( ( A e. NN /\ B e. NN ) /\ x e. NN ) -> x e. CC ) |
| 9 |
|
nnne0 |
|- ( A e. NN -> A =/= 0 ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( A e. NN /\ B e. NN ) /\ x e. NN ) -> A =/= 0 ) |
| 11 |
4 6 8 10
|
divmuld |
|- ( ( ( A e. NN /\ B e. NN ) /\ x e. NN ) -> ( ( B / A ) = x <-> ( A x. x ) = B ) ) |
| 12 |
2 11
|
bitrid |
|- ( ( ( A e. NN /\ B e. NN ) /\ x e. NN ) -> ( x = ( B / A ) <-> ( A x. x ) = B ) ) |
| 13 |
12
|
rexbidva |
|- ( ( A e. NN /\ B e. NN ) -> ( E. x e. NN x = ( B / A ) <-> E. x e. NN ( A x. x ) = B ) ) |
| 14 |
1 13
|
bitr2id |
|- ( ( A e. NN /\ B e. NN ) -> ( E. x e. NN ( A x. x ) = B <-> ( B / A ) e. NN ) ) |