| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 2 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
| 3 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 4 |
3
|
adantr |
|- ( ( A e. NN /\ B e. NN ) -> A e. ZZ ) |
| 5 |
|
dvdsval2 |
|- ( ( B e. ZZ /\ B =/= 0 /\ A e. ZZ ) -> ( B || A <-> ( A / B ) e. ZZ ) ) |
| 6 |
1 2 4 5
|
syl2an23an |
|- ( ( A e. NN /\ B e. NN ) -> ( B || A <-> ( A / B ) e. ZZ ) ) |
| 7 |
6
|
anbi1d |
|- ( ( A e. NN /\ B e. NN ) -> ( ( B || A /\ 0 < ( A / B ) ) <-> ( ( A / B ) e. ZZ /\ 0 < ( A / B ) ) ) ) |
| 8 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
| 9 |
8
|
adantr |
|- ( ( A e. NN /\ B e. NN ) -> A e. RR ) |
| 10 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
| 11 |
10
|
adantl |
|- ( ( A e. NN /\ B e. NN ) -> B e. RR ) |
| 12 |
|
nngt0 |
|- ( A e. NN -> 0 < A ) |
| 13 |
12
|
adantr |
|- ( ( A e. NN /\ B e. NN ) -> 0 < A ) |
| 14 |
|
nngt0 |
|- ( B e. NN -> 0 < B ) |
| 15 |
14
|
adantl |
|- ( ( A e. NN /\ B e. NN ) -> 0 < B ) |
| 16 |
9 11 13 15
|
divgt0d |
|- ( ( A e. NN /\ B e. NN ) -> 0 < ( A / B ) ) |
| 17 |
16
|
biantrud |
|- ( ( A e. NN /\ B e. NN ) -> ( B || A <-> ( B || A /\ 0 < ( A / B ) ) ) ) |
| 18 |
|
elnnz |
|- ( ( A / B ) e. NN <-> ( ( A / B ) e. ZZ /\ 0 < ( A / B ) ) ) |
| 19 |
18
|
a1i |
|- ( ( A e. NN /\ B e. NN ) -> ( ( A / B ) e. NN <-> ( ( A / B ) e. ZZ /\ 0 < ( A / B ) ) ) ) |
| 20 |
7 17 19
|
3bitr4d |
|- ( ( A e. NN /\ B e. NN ) -> ( B || A <-> ( A / B ) e. NN ) ) |