Description: The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | nndivre | |- ( ( A e. RR /\ N e. NN ) -> ( A / N ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre | |- ( N e. NN -> N e. RR ) |
|
2 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
3 | 1 2 | jca | |- ( N e. NN -> ( N e. RR /\ N =/= 0 ) ) |
4 | redivcl | |- ( ( A e. RR /\ N e. RR /\ N =/= 0 ) -> ( A / N ) e. RR ) |
|
5 | 4 | 3expb | |- ( ( A e. RR /\ ( N e. RR /\ N =/= 0 ) ) -> ( A / N ) e. RR ) |
6 | 3 5 | sylan2 | |- ( ( A e. RR /\ N e. NN ) -> ( A / N ) e. RR ) |