Metamath Proof Explorer


Theorem nndivre

Description: The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008)

Ref Expression
Assertion nndivre
|- ( ( A e. RR /\ N e. NN ) -> ( A / N ) e. RR )

Proof

Step Hyp Ref Expression
1 nnre
 |-  ( N e. NN -> N e. RR )
2 nnne0
 |-  ( N e. NN -> N =/= 0 )
3 1 2 jca
 |-  ( N e. NN -> ( N e. RR /\ N =/= 0 ) )
4 redivcl
 |-  ( ( A e. RR /\ N e. RR /\ N =/= 0 ) -> ( A / N ) e. RR )
5 4 3expb
 |-  ( ( A e. RR /\ ( N e. RR /\ N =/= 0 ) ) -> ( A / N ) e. RR )
6 3 5 sylan2
 |-  ( ( A e. RR /\ N e. NN ) -> ( A / N ) e. RR )