Description: The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nndivre | |- ( ( A e. RR /\ N e. NN ) -> ( A / N ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 2 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 3 | 1 2 | jca | |- ( N e. NN -> ( N e. RR /\ N =/= 0 ) ) |
| 4 | redivcl | |- ( ( A e. RR /\ N e. RR /\ N =/= 0 ) -> ( A / N ) e. RR ) |
|
| 5 | 4 | 3expb | |- ( ( A e. RR /\ ( N e. RR /\ N =/= 0 ) ) -> ( A / N ) e. RR ) |
| 6 | 3 5 | sylan2 | |- ( ( A e. RR /\ N e. NN ) -> ( A / N ) e. RR ) |