Metamath Proof Explorer


Theorem nndivred

Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses nndivred.1
|- ( ph -> A e. RR )
nndivred.2
|- ( ph -> B e. NN )
Assertion nndivred
|- ( ph -> ( A / B ) e. RR )

Proof

Step Hyp Ref Expression
1 nndivred.1
 |-  ( ph -> A e. RR )
2 nndivred.2
 |-  ( ph -> B e. NN )
3 nndivre
 |-  ( ( A e. RR /\ B e. NN ) -> ( A / B ) e. RR )
4 1 2 3 syl2anc
 |-  ( ph -> ( A / B ) e. RR )