Step |
Hyp |
Ref |
Expression |
1 |
|
nnmulcl |
|- ( ( ( B / A ) e. NN /\ ( C / B ) e. NN ) -> ( ( B / A ) x. ( C / B ) ) e. NN ) |
2 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
3 |
2
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> B e. CC ) |
4 |
|
simp3 |
|- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> C e. CC ) |
5 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
6 |
|
nnne0 |
|- ( A e. NN -> A =/= 0 ) |
7 |
5 6
|
jca |
|- ( A e. NN -> ( A e. CC /\ A =/= 0 ) ) |
8 |
7
|
3ad2ant1 |
|- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( A e. CC /\ A =/= 0 ) ) |
9 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
10 |
2 9
|
jca |
|- ( B e. NN -> ( B e. CC /\ B =/= 0 ) ) |
11 |
10
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( B e. CC /\ B =/= 0 ) ) |
12 |
|
divmul24 |
|- ( ( ( B e. CC /\ C e. CC ) /\ ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) ) -> ( ( B / A ) x. ( C / B ) ) = ( ( B / B ) x. ( C / A ) ) ) |
13 |
3 4 8 11 12
|
syl22anc |
|- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( ( B / A ) x. ( C / B ) ) = ( ( B / B ) x. ( C / A ) ) ) |
14 |
2 9
|
dividd |
|- ( B e. NN -> ( B / B ) = 1 ) |
15 |
14
|
oveq1d |
|- ( B e. NN -> ( ( B / B ) x. ( C / A ) ) = ( 1 x. ( C / A ) ) ) |
16 |
15
|
3ad2ant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( ( B / B ) x. ( C / A ) ) = ( 1 x. ( C / A ) ) ) |
17 |
|
divcl |
|- ( ( C e. CC /\ A e. CC /\ A =/= 0 ) -> ( C / A ) e. CC ) |
18 |
17
|
3expb |
|- ( ( C e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( C / A ) e. CC ) |
19 |
7 18
|
sylan2 |
|- ( ( C e. CC /\ A e. NN ) -> ( C / A ) e. CC ) |
20 |
19
|
ancoms |
|- ( ( A e. NN /\ C e. CC ) -> ( C / A ) e. CC ) |
21 |
20
|
mulid2d |
|- ( ( A e. NN /\ C e. CC ) -> ( 1 x. ( C / A ) ) = ( C / A ) ) |
22 |
21
|
3adant2 |
|- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( 1 x. ( C / A ) ) = ( C / A ) ) |
23 |
13 16 22
|
3eqtrd |
|- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( ( B / A ) x. ( C / B ) ) = ( C / A ) ) |
24 |
23
|
eleq1d |
|- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( ( ( B / A ) x. ( C / B ) ) e. NN <-> ( C / A ) e. NN ) ) |
25 |
1 24
|
syl5ib |
|- ( ( A e. NN /\ B e. NN /\ C e. CC ) -> ( ( ( B / A ) e. NN /\ ( C / B ) e. NN ) -> ( C / A ) e. NN ) ) |
26 |
25
|
imp |
|- ( ( ( A e. NN /\ B e. NN /\ C e. CC ) /\ ( ( B / A ) e. NN /\ ( C / B ) e. NN ) ) -> ( C / A ) e. NN ) |