| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnfi |  |-  ( A e. _om -> A e. Fin ) | 
						
							| 2 |  | domnsymfi |  |-  ( ( A e. Fin /\ A ~<_ B ) -> -. B ~< A ) | 
						
							| 3 | 1 2 | sylan |  |-  ( ( A e. _om /\ A ~<_ B ) -> -. B ~< A ) | 
						
							| 4 | 3 | ex |  |-  ( A e. _om -> ( A ~<_ B -> -. B ~< A ) ) | 
						
							| 5 |  | php2 |  |-  ( ( A e. _om /\ B C. A ) -> B ~< A ) | 
						
							| 6 | 5 | ex |  |-  ( A e. _om -> ( B C. A -> B ~< A ) ) | 
						
							| 7 | 4 6 | nsyld |  |-  ( A e. _om -> ( A ~<_ B -> -. B C. A ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( A e. _om /\ B e. On ) -> ( A ~<_ B -> -. B C. A ) ) | 
						
							| 9 |  | nnord |  |-  ( A e. _om -> Ord A ) | 
						
							| 10 |  | eloni |  |-  ( B e. On -> Ord B ) | 
						
							| 11 |  | ordtri1 |  |-  ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) ) | 
						
							| 12 |  | ordelpss |  |-  ( ( Ord B /\ Ord A ) -> ( B e. A <-> B C. A ) ) | 
						
							| 13 | 12 | ancoms |  |-  ( ( Ord A /\ Ord B ) -> ( B e. A <-> B C. A ) ) | 
						
							| 14 | 13 | notbid |  |-  ( ( Ord A /\ Ord B ) -> ( -. B e. A <-> -. B C. A ) ) | 
						
							| 15 | 11 14 | bitrd |  |-  ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B C. A ) ) | 
						
							| 16 | 9 10 15 | syl2an |  |-  ( ( A e. _om /\ B e. On ) -> ( A C_ B <-> -. B C. A ) ) | 
						
							| 17 | 8 16 | sylibrd |  |-  ( ( A e. _om /\ B e. On ) -> ( A ~<_ B -> A C_ B ) ) | 
						
							| 18 |  | ssdomfi2 |  |-  ( ( A e. Fin /\ B e. On /\ A C_ B ) -> A ~<_ B ) | 
						
							| 19 | 18 | 3expia |  |-  ( ( A e. Fin /\ B e. On ) -> ( A C_ B -> A ~<_ B ) ) | 
						
							| 20 | 1 19 | sylan |  |-  ( ( A e. _om /\ B e. On ) -> ( A C_ B -> A ~<_ B ) ) | 
						
							| 21 | 17 20 | impbid |  |-  ( ( A e. _om /\ B e. On ) -> ( A ~<_ B <-> A C_ B ) ) |