| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							php2 | 
							 |-  ( ( A e. _om /\ B C. A ) -> B ~< A )  | 
						
						
							| 2 | 
							
								1
							 | 
							ex | 
							 |-  ( A e. _om -> ( B C. A -> B ~< A ) )  | 
						
						
							| 3 | 
							
								
							 | 
							domnsym | 
							 |-  ( A ~<_ B -> -. B ~< A )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							nsyli | 
							 |-  ( A e. _om -> ( A ~<_ B -> -. B C. A ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( A e. _om /\ B e. On ) -> ( A ~<_ B -> -. B C. A ) )  | 
						
						
							| 6 | 
							
								
							 | 
							nnord | 
							 |-  ( A e. _om -> Ord A )  | 
						
						
							| 7 | 
							
								
							 | 
							eloni | 
							 |-  ( B e. On -> Ord B )  | 
						
						
							| 8 | 
							
								
							 | 
							ordtri1 | 
							 |-  ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ordelpss | 
							 |-  ( ( Ord B /\ Ord A ) -> ( B e. A <-> B C. A ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ancoms | 
							 |-  ( ( Ord A /\ Ord B ) -> ( B e. A <-> B C. A ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							notbid | 
							 |-  ( ( Ord A /\ Ord B ) -> ( -. B e. A <-> -. B C. A ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							bitrd | 
							 |-  ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B C. A ) )  | 
						
						
							| 13 | 
							
								6 7 12
							 | 
							syl2an | 
							 |-  ( ( A e. _om /\ B e. On ) -> ( A C_ B <-> -. B C. A ) )  | 
						
						
							| 14 | 
							
								5 13
							 | 
							sylibrd | 
							 |-  ( ( A e. _om /\ B e. On ) -> ( A ~<_ B -> A C_ B ) )  | 
						
						
							| 15 | 
							
								
							 | 
							ssdomg | 
							 |-  ( B e. On -> ( A C_ B -> A ~<_ B ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantl | 
							 |-  ( ( A e. _om /\ B e. On ) -> ( A C_ B -> A ~<_ B ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							impbid | 
							 |-  ( ( A e. _om /\ B e. On ) -> ( A ~<_ B <-> A C_ B ) )  |