Metamath Proof Explorer


Theorem nnehalf

Description: The half of an even positive integer is a positive integer. (Contributed by AV, 28-Jun-2021)

Ref Expression
Assertion nnehalf
|- ( ( N e. NN /\ 2 || N ) -> ( N / 2 ) e. NN )

Proof

Step Hyp Ref Expression
1 nnnn0
 |-  ( N e. NN -> N e. NN0 )
2 nn0ehalf
 |-  ( ( N e. NN0 /\ 2 || N ) -> ( N / 2 ) e. NN0 )
3 1 2 sylan
 |-  ( ( N e. NN /\ 2 || N ) -> ( N / 2 ) e. NN0 )
4 nn0enne
 |-  ( N e. NN -> ( ( N / 2 ) e. NN0 <-> ( N / 2 ) e. NN ) )
5 4 adantr
 |-  ( ( N e. NN /\ 2 || N ) -> ( ( N / 2 ) e. NN0 <-> ( N / 2 ) e. NN ) )
6 3 5 mpbid
 |-  ( ( N e. NN /\ 2 || N ) -> ( N / 2 ) e. NN )