Metamath Proof Explorer


Theorem nnel

Description: Negation of negated membership, analogous to nne . (Contributed by Alexander van der Vekens, 18-Jan-2018) (Proof shortened by Wolf Lammen, 25-Nov-2019)

Ref Expression
Assertion nnel
|- ( -. A e/ B <-> A e. B )

Proof

Step Hyp Ref Expression
1 df-nel
 |-  ( A e/ B <-> -. A e. B )
2 1 bicomi
 |-  ( -. A e. B <-> A e/ B )
3 2 con1bii
 |-  ( -. A e/ B <-> A e. B )