| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
|- ( x = (/) -> ( x ~~ z <-> (/) ~~ z ) ) |
| 2 |
|
eqeq1 |
|- ( x = (/) -> ( x = z <-> (/) = z ) ) |
| 3 |
1 2
|
imbi12d |
|- ( x = (/) -> ( ( x ~~ z -> x = z ) <-> ( (/) ~~ z -> (/) = z ) ) ) |
| 4 |
3
|
ralbidv |
|- ( x = (/) -> ( A. z e. _om ( x ~~ z -> x = z ) <-> A. z e. _om ( (/) ~~ z -> (/) = z ) ) ) |
| 5 |
|
breq1 |
|- ( x = y -> ( x ~~ z <-> y ~~ z ) ) |
| 6 |
|
eqeq1 |
|- ( x = y -> ( x = z <-> y = z ) ) |
| 7 |
5 6
|
imbi12d |
|- ( x = y -> ( ( x ~~ z -> x = z ) <-> ( y ~~ z -> y = z ) ) ) |
| 8 |
7
|
ralbidv |
|- ( x = y -> ( A. z e. _om ( x ~~ z -> x = z ) <-> A. z e. _om ( y ~~ z -> y = z ) ) ) |
| 9 |
|
breq1 |
|- ( x = suc y -> ( x ~~ z <-> suc y ~~ z ) ) |
| 10 |
|
eqeq1 |
|- ( x = suc y -> ( x = z <-> suc y = z ) ) |
| 11 |
9 10
|
imbi12d |
|- ( x = suc y -> ( ( x ~~ z -> x = z ) <-> ( suc y ~~ z -> suc y = z ) ) ) |
| 12 |
11
|
ralbidv |
|- ( x = suc y -> ( A. z e. _om ( x ~~ z -> x = z ) <-> A. z e. _om ( suc y ~~ z -> suc y = z ) ) ) |
| 13 |
|
breq1 |
|- ( x = A -> ( x ~~ z <-> A ~~ z ) ) |
| 14 |
|
eqeq1 |
|- ( x = A -> ( x = z <-> A = z ) ) |
| 15 |
13 14
|
imbi12d |
|- ( x = A -> ( ( x ~~ z -> x = z ) <-> ( A ~~ z -> A = z ) ) ) |
| 16 |
15
|
ralbidv |
|- ( x = A -> ( A. z e. _om ( x ~~ z -> x = z ) <-> A. z e. _om ( A ~~ z -> A = z ) ) ) |
| 17 |
|
ensym |
|- ( (/) ~~ z -> z ~~ (/) ) |
| 18 |
|
en0 |
|- ( z ~~ (/) <-> z = (/) ) |
| 19 |
|
eqcom |
|- ( z = (/) <-> (/) = z ) |
| 20 |
18 19
|
bitri |
|- ( z ~~ (/) <-> (/) = z ) |
| 21 |
17 20
|
sylib |
|- ( (/) ~~ z -> (/) = z ) |
| 22 |
21
|
rgenw |
|- A. z e. _om ( (/) ~~ z -> (/) = z ) |
| 23 |
|
nn0suc |
|- ( w e. _om -> ( w = (/) \/ E. z e. _om w = suc z ) ) |
| 24 |
|
en0 |
|- ( suc y ~~ (/) <-> suc y = (/) ) |
| 25 |
|
breq2 |
|- ( w = (/) -> ( suc y ~~ w <-> suc y ~~ (/) ) ) |
| 26 |
|
eqeq2 |
|- ( w = (/) -> ( suc y = w <-> suc y = (/) ) ) |
| 27 |
25 26
|
bibi12d |
|- ( w = (/) -> ( ( suc y ~~ w <-> suc y = w ) <-> ( suc y ~~ (/) <-> suc y = (/) ) ) ) |
| 28 |
24 27
|
mpbiri |
|- ( w = (/) -> ( suc y ~~ w <-> suc y = w ) ) |
| 29 |
28
|
biimpd |
|- ( w = (/) -> ( suc y ~~ w -> suc y = w ) ) |
| 30 |
29
|
a1i |
|- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( w = (/) -> ( suc y ~~ w -> suc y = w ) ) ) |
| 31 |
|
nfv |
|- F/ z y e. _om |
| 32 |
|
nfra1 |
|- F/ z A. z e. _om ( y ~~ z -> y = z ) |
| 33 |
31 32
|
nfan |
|- F/ z ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) |
| 34 |
|
nfv |
|- F/ z ( suc y ~~ w -> suc y = w ) |
| 35 |
|
vex |
|- y e. _V |
| 36 |
|
vex |
|- z e. _V |
| 37 |
35 36
|
phplem4OLD |
|- ( ( y e. _om /\ z e. _om ) -> ( suc y ~~ suc z -> y ~~ z ) ) |
| 38 |
37
|
imim1d |
|- ( ( y e. _om /\ z e. _om ) -> ( ( y ~~ z -> y = z ) -> ( suc y ~~ suc z -> y = z ) ) ) |
| 39 |
38
|
ex |
|- ( y e. _om -> ( z e. _om -> ( ( y ~~ z -> y = z ) -> ( suc y ~~ suc z -> y = z ) ) ) ) |
| 40 |
39
|
a2d |
|- ( y e. _om -> ( ( z e. _om -> ( y ~~ z -> y = z ) ) -> ( z e. _om -> ( suc y ~~ suc z -> y = z ) ) ) ) |
| 41 |
|
rsp |
|- ( A. z e. _om ( y ~~ z -> y = z ) -> ( z e. _om -> ( y ~~ z -> y = z ) ) ) |
| 42 |
40 41
|
impel |
|- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( z e. _om -> ( suc y ~~ suc z -> y = z ) ) ) |
| 43 |
|
suceq |
|- ( y = z -> suc y = suc z ) |
| 44 |
42 43
|
syl8 |
|- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( z e. _om -> ( suc y ~~ suc z -> suc y = suc z ) ) ) |
| 45 |
|
breq2 |
|- ( w = suc z -> ( suc y ~~ w <-> suc y ~~ suc z ) ) |
| 46 |
|
eqeq2 |
|- ( w = suc z -> ( suc y = w <-> suc y = suc z ) ) |
| 47 |
45 46
|
imbi12d |
|- ( w = suc z -> ( ( suc y ~~ w -> suc y = w ) <-> ( suc y ~~ suc z -> suc y = suc z ) ) ) |
| 48 |
47
|
biimprcd |
|- ( ( suc y ~~ suc z -> suc y = suc z ) -> ( w = suc z -> ( suc y ~~ w -> suc y = w ) ) ) |
| 49 |
44 48
|
syl6 |
|- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( z e. _om -> ( w = suc z -> ( suc y ~~ w -> suc y = w ) ) ) ) |
| 50 |
33 34 49
|
rexlimd |
|- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( E. z e. _om w = suc z -> ( suc y ~~ w -> suc y = w ) ) ) |
| 51 |
30 50
|
jaod |
|- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( ( w = (/) \/ E. z e. _om w = suc z ) -> ( suc y ~~ w -> suc y = w ) ) ) |
| 52 |
51
|
ex |
|- ( y e. _om -> ( A. z e. _om ( y ~~ z -> y = z ) -> ( ( w = (/) \/ E. z e. _om w = suc z ) -> ( suc y ~~ w -> suc y = w ) ) ) ) |
| 53 |
23 52
|
syl7 |
|- ( y e. _om -> ( A. z e. _om ( y ~~ z -> y = z ) -> ( w e. _om -> ( suc y ~~ w -> suc y = w ) ) ) ) |
| 54 |
53
|
ralrimdv |
|- ( y e. _om -> ( A. z e. _om ( y ~~ z -> y = z ) -> A. w e. _om ( suc y ~~ w -> suc y = w ) ) ) |
| 55 |
|
breq2 |
|- ( w = z -> ( suc y ~~ w <-> suc y ~~ z ) ) |
| 56 |
|
eqeq2 |
|- ( w = z -> ( suc y = w <-> suc y = z ) ) |
| 57 |
55 56
|
imbi12d |
|- ( w = z -> ( ( suc y ~~ w -> suc y = w ) <-> ( suc y ~~ z -> suc y = z ) ) ) |
| 58 |
57
|
cbvralvw |
|- ( A. w e. _om ( suc y ~~ w -> suc y = w ) <-> A. z e. _om ( suc y ~~ z -> suc y = z ) ) |
| 59 |
54 58
|
imbitrdi |
|- ( y e. _om -> ( A. z e. _om ( y ~~ z -> y = z ) -> A. z e. _om ( suc y ~~ z -> suc y = z ) ) ) |
| 60 |
4 8 12 16 22 59
|
finds |
|- ( A e. _om -> A. z e. _om ( A ~~ z -> A = z ) ) |
| 61 |
|
breq2 |
|- ( z = B -> ( A ~~ z <-> A ~~ B ) ) |
| 62 |
|
eqeq2 |
|- ( z = B -> ( A = z <-> A = B ) ) |
| 63 |
61 62
|
imbi12d |
|- ( z = B -> ( ( A ~~ z -> A = z ) <-> ( A ~~ B -> A = B ) ) ) |
| 64 |
63
|
rspcv |
|- ( B e. _om -> ( A. z e. _om ( A ~~ z -> A = z ) -> ( A ~~ B -> A = B ) ) ) |
| 65 |
60 64
|
mpan9 |
|- ( ( A e. _om /\ B e. _om ) -> ( A ~~ B -> A = B ) ) |
| 66 |
|
eqeng |
|- ( A e. _om -> ( A = B -> A ~~ B ) ) |
| 67 |
66
|
adantr |
|- ( ( A e. _om /\ B e. _om ) -> ( A = B -> A ~~ B ) ) |
| 68 |
65 67
|
impbid |
|- ( ( A e. _om /\ B e. _om ) -> ( A ~~ B <-> A = B ) ) |