Metamath Proof Explorer


Theorem nnenom

Description: The set of positive integers (as a subset of complex numbers) is equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM, 31-Jul-2004) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion nnenom
|- NN ~~ _om

Proof

Step Hyp Ref Expression
1 omex
 |-  _om e. _V
2 nn0ex
 |-  NN0 e. _V
3 eqid
 |-  ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om )
4 3 hashgf1o
 |-  ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0
5 f1oen2g
 |-  ( ( _om e. _V /\ NN0 e. _V /\ ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 ) -> _om ~~ NN0 )
6 1 2 4 5 mp3an
 |-  _om ~~ NN0
7 nn0ennn
 |-  NN0 ~~ NN
8 6 7 entr2i
 |-  NN ~~ _om