| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 2 |
|
2re |
|- 2 e. RR |
| 3 |
2
|
a1i |
|- ( N e. NN -> 2 e. RR ) |
| 4 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 5 |
|
2pos |
|- 0 < 2 |
| 6 |
5
|
a1i |
|- ( N e. NN -> 0 < 2 ) |
| 7 |
1 3 4 6
|
divgt0d |
|- ( N e. NN -> 0 < ( N / 2 ) ) |
| 8 |
|
evendiv2z |
|- ( N e. Even -> ( N / 2 ) e. ZZ ) |
| 9 |
7 8
|
anim12ci |
|- ( ( N e. NN /\ N e. Even ) -> ( ( N / 2 ) e. ZZ /\ 0 < ( N / 2 ) ) ) |
| 10 |
|
elnnz |
|- ( ( N / 2 ) e. NN <-> ( ( N / 2 ) e. ZZ /\ 0 < ( N / 2 ) ) ) |
| 11 |
9 10
|
sylibr |
|- ( ( N e. NN /\ N e. Even ) -> ( N / 2 ) e. NN ) |