Metamath Proof Explorer


Theorem nnexpcld

Description: Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses nnexpcld.1
|- ( ph -> A e. NN )
nnexpcld.2
|- ( ph -> N e. NN0 )
Assertion nnexpcld
|- ( ph -> ( A ^ N ) e. NN )

Proof

Step Hyp Ref Expression
1 nnexpcld.1
 |-  ( ph -> A e. NN )
2 nnexpcld.2
 |-  ( ph -> N e. NN0 )
3 nnexpcl
 |-  ( ( A e. NN /\ N e. NN0 ) -> ( A ^ N ) e. NN )
4 1 2 3 syl2anc
 |-  ( ph -> ( A ^ N ) e. NN )