Metamath Proof Explorer


Theorem nnfiOLD

Description: Obsolete version of nnfi as of 23-Sep-2024. (Contributed by Stefan O'Rear, 21-Mar-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nnfiOLD
|- ( A e. _om -> A e. Fin )

Proof

Step Hyp Ref Expression
1 onfin2
 |-  _om = ( On i^i Fin )
2 inss2
 |-  ( On i^i Fin ) C_ Fin
3 1 2 eqsstri
 |-  _om C_ Fin
4 3 sseli
 |-  ( A e. _om -> A e. Fin )