Metamath Proof Explorer


Theorem nnge1d

Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis nnge1d.1
|- ( ph -> A e. NN )
Assertion nnge1d
|- ( ph -> 1 <_ A )

Proof

Step Hyp Ref Expression
1 nnge1d.1
 |-  ( ph -> A e. NN )
2 nnge1
 |-  ( A e. NN -> 1 <_ A )
3 1 2 syl
 |-  ( ph -> 1 <_ A )