| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re |  |-  1 e. RR | 
						
							| 2 |  | 0lt1 |  |-  0 < 1 | 
						
							| 3 | 1 2 | pm3.2i |  |-  ( 1 e. RR /\ 0 < 1 ) | 
						
							| 4 |  | rpregt0 |  |-  ( B e. RR+ -> ( B e. RR /\ 0 < B ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( A e. NN /\ B e. RR+ ) -> ( B e. RR /\ 0 < B ) ) | 
						
							| 6 |  | nnre |  |-  ( A e. NN -> A e. RR ) | 
						
							| 7 |  | nngt0 |  |-  ( A e. NN -> 0 < A ) | 
						
							| 8 | 6 7 | jca |  |-  ( A e. NN -> ( A e. RR /\ 0 < A ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A e. NN /\ B e. RR+ ) -> ( A e. RR /\ 0 < A ) ) | 
						
							| 10 |  | lediv2 |  |-  ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) ) -> ( 1 <_ B <-> ( A / B ) <_ ( A / 1 ) ) ) | 
						
							| 11 | 3 5 9 10 | mp3an2i |  |-  ( ( A e. NN /\ B e. RR+ ) -> ( 1 <_ B <-> ( A / B ) <_ ( A / 1 ) ) ) | 
						
							| 12 |  | nncn |  |-  ( A e. NN -> A e. CC ) | 
						
							| 13 | 12 | div1d |  |-  ( A e. NN -> ( A / 1 ) = A ) | 
						
							| 14 | 13 | adantr |  |-  ( ( A e. NN /\ B e. RR+ ) -> ( A / 1 ) = A ) | 
						
							| 15 | 14 | breq2d |  |-  ( ( A e. NN /\ B e. RR+ ) -> ( ( A / B ) <_ ( A / 1 ) <-> ( A / B ) <_ A ) ) | 
						
							| 16 | 11 15 | bitrd |  |-  ( ( A e. NN /\ B e. RR+ ) -> ( 1 <_ B <-> ( A / B ) <_ A ) ) |