| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 2 | 1 | mulridd |  |-  ( N e. NN -> ( N x. 1 ) = N ) | 
						
							| 3 |  | nnge1 |  |-  ( N e. NN -> 1 <_ N ) | 
						
							| 4 |  | 1red |  |-  ( N e. NN -> 1 e. RR ) | 
						
							| 5 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 6 |  | nngt0 |  |-  ( N e. NN -> 0 < N ) | 
						
							| 7 |  | lemul2 |  |-  ( ( 1 e. RR /\ N e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( 1 <_ N <-> ( N x. 1 ) <_ ( N x. N ) ) ) | 
						
							| 8 | 4 5 5 6 7 | syl112anc |  |-  ( N e. NN -> ( 1 <_ N <-> ( N x. 1 ) <_ ( N x. N ) ) ) | 
						
							| 9 | 3 8 | mpbid |  |-  ( N e. NN -> ( N x. 1 ) <_ ( N x. N ) ) | 
						
							| 10 | 2 9 | eqbrtrrd |  |-  ( N e. NN -> N <_ ( N x. N ) ) | 
						
							| 11 |  | sqval |  |-  ( N e. CC -> ( N ^ 2 ) = ( N x. N ) ) | 
						
							| 12 | 1 11 | syl |  |-  ( N e. NN -> ( N ^ 2 ) = ( N x. N ) ) | 
						
							| 13 | 10 12 | breqtrrd |  |-  ( N e. NN -> N <_ ( N ^ 2 ) ) |