| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-1o |  |-  1o = suc (/) | 
						
							| 2 | 1 | oveq2i |  |-  ( A .o 1o ) = ( A .o suc (/) ) | 
						
							| 3 |  | peano1 |  |-  (/) e. _om | 
						
							| 4 |  | nnmsuc |  |-  ( ( A e. _om /\ (/) e. _om ) -> ( A .o suc (/) ) = ( ( A .o (/) ) +o A ) ) | 
						
							| 5 | 3 4 | mpan2 |  |-  ( A e. _om -> ( A .o suc (/) ) = ( ( A .o (/) ) +o A ) ) | 
						
							| 6 |  | nnm0 |  |-  ( A e. _om -> ( A .o (/) ) = (/) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( A e. _om -> ( ( A .o (/) ) +o A ) = ( (/) +o A ) ) | 
						
							| 8 |  | nna0r |  |-  ( A e. _om -> ( (/) +o A ) = A ) | 
						
							| 9 | 5 7 8 | 3eqtrd |  |-  ( A e. _om -> ( A .o suc (/) ) = A ) | 
						
							| 10 | 2 9 | eqtrid |  |-  ( A e. _om -> ( A .o 1o ) = A ) |