| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn1m1nn |
|- ( N e. NN -> ( N = 1 \/ ( N - 1 ) e. NN ) ) |
| 2 |
|
oveq1 |
|- ( N = 1 -> ( N - 1 ) = ( 1 - 1 ) ) |
| 3 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 4 |
2 3
|
eqtrdi |
|- ( N = 1 -> ( N - 1 ) = 0 ) |
| 5 |
4
|
orim1i |
|- ( ( N = 1 \/ ( N - 1 ) e. NN ) -> ( ( N - 1 ) = 0 \/ ( N - 1 ) e. NN ) ) |
| 6 |
1 5
|
syl |
|- ( N e. NN -> ( ( N - 1 ) = 0 \/ ( N - 1 ) e. NN ) ) |
| 7 |
6
|
orcomd |
|- ( N e. NN -> ( ( N - 1 ) e. NN \/ ( N - 1 ) = 0 ) ) |
| 8 |
|
elnn0 |
|- ( ( N - 1 ) e. NN0 <-> ( ( N - 1 ) e. NN \/ ( N - 1 ) = 0 ) ) |
| 9 |
7 8
|
sylibr |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |