Metamath Proof Explorer


Theorem nnm2

Description: Multiply an element of _om by 2o . (Contributed by Scott Fenton, 18-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion nnm2
|- ( A e. _om -> ( A .o 2o ) = ( A +o A ) )

Proof

Step Hyp Ref Expression
1 df-2o
 |-  2o = suc 1o
2 1 oveq2i
 |-  ( A .o 2o ) = ( A .o suc 1o )
3 1onn
 |-  1o e. _om
4 nnmsuc
 |-  ( ( A e. _om /\ 1o e. _om ) -> ( A .o suc 1o ) = ( ( A .o 1o ) +o A ) )
5 3 4 mpan2
 |-  ( A e. _om -> ( A .o suc 1o ) = ( ( A .o 1o ) +o A ) )
6 nnm1
 |-  ( A e. _om -> ( A .o 1o ) = A )
7 6 oveq1d
 |-  ( A e. _om -> ( ( A .o 1o ) +o A ) = ( A +o A ) )
8 5 7 eqtrd
 |-  ( A e. _om -> ( A .o suc 1o ) = ( A +o A ) )
9 2 8 eqtrid
 |-  ( A e. _om -> ( A .o 2o ) = ( A +o A ) )