Description: Multiply an element of _om by 2o . (Contributed by Scott Fenton, 18-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nnm2 | |- ( A e. _om -> ( A .o 2o ) = ( A +o A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o | |- 2o = suc 1o |
|
2 | 1 | oveq2i | |- ( A .o 2o ) = ( A .o suc 1o ) |
3 | 1onn | |- 1o e. _om |
|
4 | nnmsuc | |- ( ( A e. _om /\ 1o e. _om ) -> ( A .o suc 1o ) = ( ( A .o 1o ) +o A ) ) |
|
5 | 3 4 | mpan2 | |- ( A e. _om -> ( A .o suc 1o ) = ( ( A .o 1o ) +o A ) ) |
6 | nnm1 | |- ( A e. _om -> ( A .o 1o ) = A ) |
|
7 | 6 | oveq1d | |- ( A e. _om -> ( ( A .o 1o ) +o A ) = ( A +o A ) ) |
8 | 5 7 | eqtrd | |- ( A e. _om -> ( A .o suc 1o ) = ( A +o A ) ) |
9 | 2 8 | eqtrid | |- ( A e. _om -> ( A .o 2o ) = ( A +o A ) ) |