| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( x = 1 -> ( A x. x ) = ( A x. 1 ) ) |
| 2 |
1
|
eleq1d |
|- ( x = 1 -> ( ( A x. x ) e. NN <-> ( A x. 1 ) e. NN ) ) |
| 3 |
2
|
imbi2d |
|- ( x = 1 -> ( ( A e. NN -> ( A x. x ) e. NN ) <-> ( A e. NN -> ( A x. 1 ) e. NN ) ) ) |
| 4 |
|
oveq2 |
|- ( x = y -> ( A x. x ) = ( A x. y ) ) |
| 5 |
4
|
eleq1d |
|- ( x = y -> ( ( A x. x ) e. NN <-> ( A x. y ) e. NN ) ) |
| 6 |
5
|
imbi2d |
|- ( x = y -> ( ( A e. NN -> ( A x. x ) e. NN ) <-> ( A e. NN -> ( A x. y ) e. NN ) ) ) |
| 7 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( A x. x ) = ( A x. ( y + 1 ) ) ) |
| 8 |
7
|
eleq1d |
|- ( x = ( y + 1 ) -> ( ( A x. x ) e. NN <-> ( A x. ( y + 1 ) ) e. NN ) ) |
| 9 |
8
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( A e. NN -> ( A x. x ) e. NN ) <-> ( A e. NN -> ( A x. ( y + 1 ) ) e. NN ) ) ) |
| 10 |
|
oveq2 |
|- ( x = B -> ( A x. x ) = ( A x. B ) ) |
| 11 |
10
|
eleq1d |
|- ( x = B -> ( ( A x. x ) e. NN <-> ( A x. B ) e. NN ) ) |
| 12 |
11
|
imbi2d |
|- ( x = B -> ( ( A e. NN -> ( A x. x ) e. NN ) <-> ( A e. NN -> ( A x. B ) e. NN ) ) ) |
| 13 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
| 14 |
|
ax-1rid |
|- ( A e. RR -> ( A x. 1 ) = A ) |
| 15 |
14
|
eleq1d |
|- ( A e. RR -> ( ( A x. 1 ) e. NN <-> A e. NN ) ) |
| 16 |
15
|
biimprd |
|- ( A e. RR -> ( A e. NN -> ( A x. 1 ) e. NN ) ) |
| 17 |
13 16
|
mpcom |
|- ( A e. NN -> ( A x. 1 ) e. NN ) |
| 18 |
|
nnaddcl |
|- ( ( ( A x. y ) e. NN /\ A e. NN ) -> ( ( A x. y ) + A ) e. NN ) |
| 19 |
18
|
ancoms |
|- ( ( A e. NN /\ ( A x. y ) e. NN ) -> ( ( A x. y ) + A ) e. NN ) |
| 20 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
| 21 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
| 22 |
|
ax-1cn |
|- 1 e. CC |
| 23 |
|
adddi |
|- ( ( A e. CC /\ y e. CC /\ 1 e. CC ) -> ( A x. ( y + 1 ) ) = ( ( A x. y ) + ( A x. 1 ) ) ) |
| 24 |
22 23
|
mp3an3 |
|- ( ( A e. CC /\ y e. CC ) -> ( A x. ( y + 1 ) ) = ( ( A x. y ) + ( A x. 1 ) ) ) |
| 25 |
20 21 24
|
syl2an |
|- ( ( A e. NN /\ y e. NN ) -> ( A x. ( y + 1 ) ) = ( ( A x. y ) + ( A x. 1 ) ) ) |
| 26 |
13 14
|
syl |
|- ( A e. NN -> ( A x. 1 ) = A ) |
| 27 |
26
|
adantr |
|- ( ( A e. NN /\ y e. NN ) -> ( A x. 1 ) = A ) |
| 28 |
27
|
oveq2d |
|- ( ( A e. NN /\ y e. NN ) -> ( ( A x. y ) + ( A x. 1 ) ) = ( ( A x. y ) + A ) ) |
| 29 |
25 28
|
eqtrd |
|- ( ( A e. NN /\ y e. NN ) -> ( A x. ( y + 1 ) ) = ( ( A x. y ) + A ) ) |
| 30 |
29
|
eleq1d |
|- ( ( A e. NN /\ y e. NN ) -> ( ( A x. ( y + 1 ) ) e. NN <-> ( ( A x. y ) + A ) e. NN ) ) |
| 31 |
19 30
|
imbitrrid |
|- ( ( A e. NN /\ y e. NN ) -> ( ( A e. NN /\ ( A x. y ) e. NN ) -> ( A x. ( y + 1 ) ) e. NN ) ) |
| 32 |
31
|
exp4b |
|- ( A e. NN -> ( y e. NN -> ( A e. NN -> ( ( A x. y ) e. NN -> ( A x. ( y + 1 ) ) e. NN ) ) ) ) |
| 33 |
32
|
pm2.43b |
|- ( y e. NN -> ( A e. NN -> ( ( A x. y ) e. NN -> ( A x. ( y + 1 ) ) e. NN ) ) ) |
| 34 |
33
|
a2d |
|- ( y e. NN -> ( ( A e. NN -> ( A x. y ) e. NN ) -> ( A e. NN -> ( A x. ( y + 1 ) ) e. NN ) ) ) |
| 35 |
3 6 9 12 17 34
|
nnind |
|- ( B e. NN -> ( A e. NN -> ( A x. B ) e. NN ) ) |
| 36 |
35
|
impcom |
|- ( ( A e. NN /\ B e. NN ) -> ( A x. B ) e. NN ) |