Metamath Proof Explorer


Theorem nnmulcli

Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses nnmulcli.1
|- A e. NN
nnmulcli.2
|- B e. NN
Assertion nnmulcli
|- ( A x. B ) e. NN

Proof

Step Hyp Ref Expression
1 nnmulcli.1
 |-  A e. NN
2 nnmulcli.2
 |-  B e. NN
3 nnmulcl
 |-  ( ( A e. NN /\ B e. NN ) -> ( A x. B ) e. NN )
4 1 2 3 mp2an
 |-  ( A x. B ) e. NN