Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1ne0 |
|- 1 =/= 0 |
2 |
|
1re |
|- 1 e. RR |
3 |
|
0re |
|- 0 e. RR |
4 |
2 3
|
lttri2i |
|- ( 1 =/= 0 <-> ( 1 < 0 \/ 0 < 1 ) ) |
5 |
1 4
|
mpbi |
|- ( 1 < 0 \/ 0 < 1 ) |
6 |
|
breq1 |
|- ( x = 1 -> ( x < 0 <-> 1 < 0 ) ) |
7 |
6
|
imbi2d |
|- ( x = 1 -> ( ( 1 < 0 -> x < 0 ) <-> ( 1 < 0 -> 1 < 0 ) ) ) |
8 |
|
breq1 |
|- ( x = y -> ( x < 0 <-> y < 0 ) ) |
9 |
8
|
imbi2d |
|- ( x = y -> ( ( 1 < 0 -> x < 0 ) <-> ( 1 < 0 -> y < 0 ) ) ) |
10 |
|
breq1 |
|- ( x = ( y + 1 ) -> ( x < 0 <-> ( y + 1 ) < 0 ) ) |
11 |
10
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( 1 < 0 -> x < 0 ) <-> ( 1 < 0 -> ( y + 1 ) < 0 ) ) ) |
12 |
|
breq1 |
|- ( x = A -> ( x < 0 <-> A < 0 ) ) |
13 |
12
|
imbi2d |
|- ( x = A -> ( ( 1 < 0 -> x < 0 ) <-> ( 1 < 0 -> A < 0 ) ) ) |
14 |
|
id |
|- ( 1 < 0 -> 1 < 0 ) |
15 |
|
simp1 |
|- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> y e. NN ) |
16 |
15
|
nnred |
|- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> y e. RR ) |
17 |
|
1red |
|- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> 1 e. RR ) |
18 |
16 17
|
readdcld |
|- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> ( y + 1 ) e. RR ) |
19 |
3 2
|
readdcli |
|- ( 0 + 1 ) e. RR |
20 |
19
|
a1i |
|- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> ( 0 + 1 ) e. RR ) |
21 |
|
0red |
|- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> 0 e. RR ) |
22 |
|
simp3 |
|- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> y < 0 ) |
23 |
16 21 17 22
|
ltadd1dd |
|- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> ( y + 1 ) < ( 0 + 1 ) ) |
24 |
|
ax-1cn |
|- 1 e. CC |
25 |
24
|
addid2i |
|- ( 0 + 1 ) = 1 |
26 |
|
simp2 |
|- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> 1 < 0 ) |
27 |
25 26
|
eqbrtrid |
|- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> ( 0 + 1 ) < 0 ) |
28 |
18 20 21 23 27
|
lttrd |
|- ( ( y e. NN /\ 1 < 0 /\ y < 0 ) -> ( y + 1 ) < 0 ) |
29 |
28
|
3exp |
|- ( y e. NN -> ( 1 < 0 -> ( y < 0 -> ( y + 1 ) < 0 ) ) ) |
30 |
29
|
a2d |
|- ( y e. NN -> ( ( 1 < 0 -> y < 0 ) -> ( 1 < 0 -> ( y + 1 ) < 0 ) ) ) |
31 |
7 9 11 13 14 30
|
nnind |
|- ( A e. NN -> ( 1 < 0 -> A < 0 ) ) |
32 |
31
|
imp |
|- ( ( A e. NN /\ 1 < 0 ) -> A < 0 ) |
33 |
32
|
lt0ne0d |
|- ( ( A e. NN /\ 1 < 0 ) -> A =/= 0 ) |
34 |
33
|
ex |
|- ( A e. NN -> ( 1 < 0 -> A =/= 0 ) ) |
35 |
|
breq2 |
|- ( x = 1 -> ( 0 < x <-> 0 < 1 ) ) |
36 |
35
|
imbi2d |
|- ( x = 1 -> ( ( 0 < 1 -> 0 < x ) <-> ( 0 < 1 -> 0 < 1 ) ) ) |
37 |
|
breq2 |
|- ( x = y -> ( 0 < x <-> 0 < y ) ) |
38 |
37
|
imbi2d |
|- ( x = y -> ( ( 0 < 1 -> 0 < x ) <-> ( 0 < 1 -> 0 < y ) ) ) |
39 |
|
breq2 |
|- ( x = ( y + 1 ) -> ( 0 < x <-> 0 < ( y + 1 ) ) ) |
40 |
39
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( 0 < 1 -> 0 < x ) <-> ( 0 < 1 -> 0 < ( y + 1 ) ) ) ) |
41 |
|
breq2 |
|- ( x = A -> ( 0 < x <-> 0 < A ) ) |
42 |
41
|
imbi2d |
|- ( x = A -> ( ( 0 < 1 -> 0 < x ) <-> ( 0 < 1 -> 0 < A ) ) ) |
43 |
|
id |
|- ( 0 < 1 -> 0 < 1 ) |
44 |
|
simp1 |
|- ( ( y e. NN /\ 0 < 1 /\ 0 < y ) -> y e. NN ) |
45 |
44
|
nnred |
|- ( ( y e. NN /\ 0 < 1 /\ 0 < y ) -> y e. RR ) |
46 |
|
1red |
|- ( ( y e. NN /\ 0 < 1 /\ 0 < y ) -> 1 e. RR ) |
47 |
|
simp3 |
|- ( ( y e. NN /\ 0 < 1 /\ 0 < y ) -> 0 < y ) |
48 |
|
simp2 |
|- ( ( y e. NN /\ 0 < 1 /\ 0 < y ) -> 0 < 1 ) |
49 |
45 46 47 48
|
addgt0d |
|- ( ( y e. NN /\ 0 < 1 /\ 0 < y ) -> 0 < ( y + 1 ) ) |
50 |
49
|
3exp |
|- ( y e. NN -> ( 0 < 1 -> ( 0 < y -> 0 < ( y + 1 ) ) ) ) |
51 |
50
|
a2d |
|- ( y e. NN -> ( ( 0 < 1 -> 0 < y ) -> ( 0 < 1 -> 0 < ( y + 1 ) ) ) ) |
52 |
36 38 40 42 43 51
|
nnind |
|- ( A e. NN -> ( 0 < 1 -> 0 < A ) ) |
53 |
52
|
imp |
|- ( ( A e. NN /\ 0 < 1 ) -> 0 < A ) |
54 |
53
|
gt0ne0d |
|- ( ( A e. NN /\ 0 < 1 ) -> A =/= 0 ) |
55 |
54
|
ex |
|- ( A e. NN -> ( 0 < 1 -> A =/= 0 ) ) |
56 |
34 55
|
jaod |
|- ( A e. NN -> ( ( 1 < 0 \/ 0 < 1 ) -> A =/= 0 ) ) |
57 |
5 56
|
mpi |
|- ( A e. NN -> A =/= 0 ) |