| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 2 |
1
|
renegcld |
|- ( N e. NN -> -u N e. RR ) |
| 3 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 4 |
|
negneg |
|- ( N e. CC -> -u -u N = N ) |
| 5 |
4
|
eleq1d |
|- ( N e. CC -> ( -u -u N e. NN <-> N e. NN ) ) |
| 6 |
5
|
biimprd |
|- ( N e. CC -> ( N e. NN -> -u -u N e. NN ) ) |
| 7 |
3 6
|
mpcom |
|- ( N e. NN -> -u -u N e. NN ) |
| 8 |
7
|
3mix3d |
|- ( N e. NN -> ( -u N = 0 \/ -u N e. NN \/ -u -u N e. NN ) ) |
| 9 |
|
elz |
|- ( -u N e. ZZ <-> ( -u N e. RR /\ ( -u N = 0 \/ -u N e. NN \/ -u -u N e. NN ) ) ) |
| 10 |
2 8 9
|
sylanbrc |
|- ( N e. NN -> -u N e. ZZ ) |