| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 2 |
|
nnaddcl |
|- ( ( M e. NN /\ N e. NN ) -> ( M + N ) e. NN ) |
| 3 |
|
oveq2 |
|- ( N = 0 -> ( M + N ) = ( M + 0 ) ) |
| 4 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
| 5 |
4
|
addridd |
|- ( M e. NN -> ( M + 0 ) = M ) |
| 6 |
3 5
|
sylan9eqr |
|- ( ( M e. NN /\ N = 0 ) -> ( M + N ) = M ) |
| 7 |
|
simpl |
|- ( ( M e. NN /\ N = 0 ) -> M e. NN ) |
| 8 |
6 7
|
eqeltrd |
|- ( ( M e. NN /\ N = 0 ) -> ( M + N ) e. NN ) |
| 9 |
2 8
|
jaodan |
|- ( ( M e. NN /\ ( N e. NN \/ N = 0 ) ) -> ( M + N ) e. NN ) |
| 10 |
1 9
|
sylan2b |
|- ( ( M e. NN /\ N e. NN0 ) -> ( M + N ) e. NN ) |