| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							prmnn | 
							 |-  ( P e. Prime -> P e. NN )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> P e. NN )  | 
						
						
							| 3 | 
							
								
							 | 
							fzo0sn0fzo1 | 
							 |-  ( P e. NN -> ( 0 ..^ P ) = ( { 0 } u. ( 1 ..^ P ) ) ) | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl | 
							 |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( 0 ..^ P ) = ( { 0 } u. ( 1 ..^ P ) ) ) | 
						
						
							| 5 | 
							
								4
							 | 
							eleq2d | 
							 |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( I e. ( 0 ..^ P ) <-> I e. ( { 0 } u. ( 1 ..^ P ) ) ) ) | 
						
						
							| 6 | 
							
								
							 | 
							elun | 
							 |-  ( I e. ( { 0 } u. ( 1 ..^ P ) ) <-> ( I e. { 0 } \/ I e. ( 1 ..^ P ) ) ) | 
						
						
							| 7 | 
							
								
							 | 
							elsni | 
							 |-  ( I e. { 0 } -> I = 0 ) | 
						
						
							| 8 | 
							
								
							 | 
							lbfzo0 | 
							 |-  ( 0 e. ( 0 ..^ P ) <-> P e. NN )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							sylibr | 
							 |-  ( P e. Prime -> 0 e. ( 0 ..^ P ) )  | 
						
						
							| 10 | 
							
								
							 | 
							elfzoelz | 
							 |-  ( N e. ( 1 ..^ P ) -> N e. ZZ )  | 
						
						
							| 11 | 
							
								
							 | 
							zcn | 
							 |-  ( N e. ZZ -> N e. CC )  | 
						
						
							| 12 | 
							
								
							 | 
							mul02 | 
							 |-  ( N e. CC -> ( 0 x. N ) = 0 )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq2d | 
							 |-  ( N e. CC -> ( 0 + ( 0 x. N ) ) = ( 0 + 0 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							00id | 
							 |-  ( 0 + 0 ) = 0  | 
						
						
							| 15 | 
							
								13 14
							 | 
							eqtrdi | 
							 |-  ( N e. CC -> ( 0 + ( 0 x. N ) ) = 0 )  | 
						
						
							| 16 | 
							
								10 11 15
							 | 
							3syl | 
							 |-  ( N e. ( 1 ..^ P ) -> ( 0 + ( 0 x. N ) ) = 0 )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							 |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( 0 + ( 0 x. N ) ) = 0 )  | 
						
						
							| 18 | 
							
								17
							 | 
							oveq1d | 
							 |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( 0 + ( 0 x. N ) ) mod P ) = ( 0 mod P ) )  | 
						
						
							| 19 | 
							
								
							 | 
							nnrp | 
							 |-  ( P e. NN -> P e. RR+ )  | 
						
						
							| 20 | 
							
								
							 | 
							0mod | 
							 |-  ( P e. RR+ -> ( 0 mod P ) = 0 )  | 
						
						
							| 21 | 
							
								1 19 20
							 | 
							3syl | 
							 |-  ( P e. Prime -> ( 0 mod P ) = 0 )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantr | 
							 |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( 0 mod P ) = 0 )  | 
						
						
							| 23 | 
							
								18 22
							 | 
							eqtrd | 
							 |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( 0 + ( 0 x. N ) ) mod P ) = 0 )  | 
						
						
							| 24 | 
							
								
							 | 
							oveq1 | 
							 |-  ( j = 0 -> ( j x. N ) = ( 0 x. N ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							oveq2d | 
							 |-  ( j = 0 -> ( 0 + ( j x. N ) ) = ( 0 + ( 0 x. N ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							oveq1d | 
							 |-  ( j = 0 -> ( ( 0 + ( j x. N ) ) mod P ) = ( ( 0 + ( 0 x. N ) ) mod P ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							eqeq1d | 
							 |-  ( j = 0 -> ( ( ( 0 + ( j x. N ) ) mod P ) = 0 <-> ( ( 0 + ( 0 x. N ) ) mod P ) = 0 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							rspcev | 
							 |-  ( ( 0 e. ( 0 ..^ P ) /\ ( ( 0 + ( 0 x. N ) ) mod P ) = 0 ) -> E. j e. ( 0 ..^ P ) ( ( 0 + ( j x. N ) ) mod P ) = 0 )  | 
						
						
							| 29 | 
							
								9 23 28
							 | 
							syl2an2r | 
							 |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( 0 + ( j x. N ) ) mod P ) = 0 )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantl | 
							 |-  ( ( I = 0 /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> E. j e. ( 0 ..^ P ) ( ( 0 + ( j x. N ) ) mod P ) = 0 )  | 
						
						
							| 31 | 
							
								
							 | 
							oveq1 | 
							 |-  ( I = 0 -> ( I + ( j x. N ) ) = ( 0 + ( j x. N ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							oveq1d | 
							 |-  ( I = 0 -> ( ( I + ( j x. N ) ) mod P ) = ( ( 0 + ( j x. N ) ) mod P ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							eqeq1d | 
							 |-  ( I = 0 -> ( ( ( I + ( j x. N ) ) mod P ) = 0 <-> ( ( 0 + ( j x. N ) ) mod P ) = 0 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantr | 
							 |-  ( ( I = 0 /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> ( ( ( I + ( j x. N ) ) mod P ) = 0 <-> ( ( 0 + ( j x. N ) ) mod P ) = 0 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							rexbidv | 
							 |-  ( ( I = 0 /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> ( E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 <-> E. j e. ( 0 ..^ P ) ( ( 0 + ( j x. N ) ) mod P ) = 0 ) )  | 
						
						
							| 36 | 
							
								30 35
							 | 
							mpbird | 
							 |-  ( ( I = 0 /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 )  | 
						
						
							| 37 | 
							
								36
							 | 
							ex | 
							 |-  ( I = 0 -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) )  | 
						
						
							| 38 | 
							
								7 37
							 | 
							syl | 
							 |-  ( I e. { 0 } -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) | 
						
						
							| 39 | 
							
								
							 | 
							simpl | 
							 |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> P e. Prime )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantl | 
							 |-  ( ( I e. ( 1 ..^ P ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> P e. Prime )  | 
						
						
							| 41 | 
							
								
							 | 
							simprr | 
							 |-  ( ( I e. ( 1 ..^ P ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> N e. ( 1 ..^ P ) )  | 
						
						
							| 42 | 
							
								
							 | 
							simpl | 
							 |-  ( ( I e. ( 1 ..^ P ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> I e. ( 1 ..^ P ) )  | 
						
						
							| 43 | 
							
								
							 | 
							modprm0 | 
							 |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 )  | 
						
						
							| 44 | 
							
								40 41 42 43
							 | 
							syl3anc | 
							 |-  ( ( I e. ( 1 ..^ P ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 )  | 
						
						
							| 45 | 
							
								44
							 | 
							ex | 
							 |-  ( I e. ( 1 ..^ P ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) )  | 
						
						
							| 46 | 
							
								38 45
							 | 
							jaoi | 
							 |-  ( ( I e. { 0 } \/ I e. ( 1 ..^ P ) ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) | 
						
						
							| 47 | 
							
								6 46
							 | 
							sylbi | 
							 |-  ( I e. ( { 0 } u. ( 1 ..^ P ) ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) | 
						
						
							| 48 | 
							
								47
							 | 
							com12 | 
							 |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( I e. ( { 0 } u. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) | 
						
						
							| 49 | 
							
								5 48
							 | 
							sylbid | 
							 |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( I e. ( 0 ..^ P ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							3impia | 
							 |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 0 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 )  |