| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2b3 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) ) |
| 2 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 3 |
|
nn0o1gt2 |
|- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N = 1 \/ 2 < N ) ) |
| 4 |
2 3
|
sylan |
|- ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N = 1 \/ 2 < N ) ) |
| 5 |
|
eqneqall |
|- ( N = 1 -> ( N =/= 1 -> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 6 |
5
|
a1d |
|- ( N = 1 -> ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N =/= 1 -> ( ( N - 1 ) / 2 ) e. NN ) ) ) |
| 7 |
|
nn0z |
|- ( ( ( N + 1 ) / 2 ) e. NN0 -> ( ( N + 1 ) / 2 ) e. ZZ ) |
| 8 |
|
peano2zm |
|- ( ( ( N + 1 ) / 2 ) e. ZZ -> ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ ) |
| 9 |
7 8
|
syl |
|- ( ( ( N + 1 ) / 2 ) e. NN0 -> ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ ) |
| 10 |
9
|
ad2antlr |
|- ( ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) /\ 2 < N ) -> ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ ) |
| 11 |
|
2cn |
|- 2 e. CC |
| 12 |
11
|
mullidi |
|- ( 1 x. 2 ) = 2 |
| 13 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 14 |
13
|
ltp1d |
|- ( N e. NN -> N < ( N + 1 ) ) |
| 15 |
14
|
adantr |
|- ( ( N e. NN /\ 2 < N ) -> N < ( N + 1 ) ) |
| 16 |
|
2re |
|- 2 e. RR |
| 17 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
| 18 |
17
|
nnred |
|- ( N e. NN -> ( N + 1 ) e. RR ) |
| 19 |
|
lttr |
|- ( ( 2 e. RR /\ N e. RR /\ ( N + 1 ) e. RR ) -> ( ( 2 < N /\ N < ( N + 1 ) ) -> 2 < ( N + 1 ) ) ) |
| 20 |
16 13 18 19
|
mp3an2i |
|- ( N e. NN -> ( ( 2 < N /\ N < ( N + 1 ) ) -> 2 < ( N + 1 ) ) ) |
| 21 |
20
|
expdimp |
|- ( ( N e. NN /\ 2 < N ) -> ( N < ( N + 1 ) -> 2 < ( N + 1 ) ) ) |
| 22 |
15 21
|
mpd |
|- ( ( N e. NN /\ 2 < N ) -> 2 < ( N + 1 ) ) |
| 23 |
12 22
|
eqbrtrid |
|- ( ( N e. NN /\ 2 < N ) -> ( 1 x. 2 ) < ( N + 1 ) ) |
| 24 |
|
1red |
|- ( ( N e. NN /\ 2 < N ) -> 1 e. RR ) |
| 25 |
18
|
adantr |
|- ( ( N e. NN /\ 2 < N ) -> ( N + 1 ) e. RR ) |
| 26 |
|
2rp |
|- 2 e. RR+ |
| 27 |
26
|
a1i |
|- ( ( N e. NN /\ 2 < N ) -> 2 e. RR+ ) |
| 28 |
24 25 27
|
ltmuldivd |
|- ( ( N e. NN /\ 2 < N ) -> ( ( 1 x. 2 ) < ( N + 1 ) <-> 1 < ( ( N + 1 ) / 2 ) ) ) |
| 29 |
23 28
|
mpbid |
|- ( ( N e. NN /\ 2 < N ) -> 1 < ( ( N + 1 ) / 2 ) ) |
| 30 |
18
|
rehalfcld |
|- ( N e. NN -> ( ( N + 1 ) / 2 ) e. RR ) |
| 31 |
30
|
adantr |
|- ( ( N e. NN /\ 2 < N ) -> ( ( N + 1 ) / 2 ) e. RR ) |
| 32 |
24 31
|
posdifd |
|- ( ( N e. NN /\ 2 < N ) -> ( 1 < ( ( N + 1 ) / 2 ) <-> 0 < ( ( ( N + 1 ) / 2 ) - 1 ) ) ) |
| 33 |
29 32
|
mpbid |
|- ( ( N e. NN /\ 2 < N ) -> 0 < ( ( ( N + 1 ) / 2 ) - 1 ) ) |
| 34 |
33
|
adantlr |
|- ( ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) /\ 2 < N ) -> 0 < ( ( ( N + 1 ) / 2 ) - 1 ) ) |
| 35 |
|
elnnz |
|- ( ( ( ( N + 1 ) / 2 ) - 1 ) e. NN <-> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ /\ 0 < ( ( ( N + 1 ) / 2 ) - 1 ) ) ) |
| 36 |
10 34 35
|
sylanbrc |
|- ( ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) /\ 2 < N ) -> ( ( ( N + 1 ) / 2 ) - 1 ) e. NN ) |
| 37 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 38 |
|
xp1d2m1eqxm1d2 |
|- ( N e. CC -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
| 39 |
37 38
|
syl |
|- ( N e. NN -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
| 40 |
39
|
eleq1d |
|- ( N e. NN -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. NN <-> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 41 |
40
|
adantr |
|- ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. NN <-> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 42 |
41
|
adantr |
|- ( ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) /\ 2 < N ) -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. NN <-> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 43 |
36 42
|
mpbid |
|- ( ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) /\ 2 < N ) -> ( ( N - 1 ) / 2 ) e. NN ) |
| 44 |
43
|
a1d |
|- ( ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) /\ 2 < N ) -> ( N =/= 1 -> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 45 |
44
|
expcom |
|- ( 2 < N -> ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N =/= 1 -> ( ( N - 1 ) / 2 ) e. NN ) ) ) |
| 46 |
6 45
|
jaoi |
|- ( ( N = 1 \/ 2 < N ) -> ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N =/= 1 -> ( ( N - 1 ) / 2 ) e. NN ) ) ) |
| 47 |
4 46
|
mpcom |
|- ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N =/= 1 -> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 48 |
47
|
impancom |
|- ( ( N e. NN /\ N =/= 1 ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 49 |
1 48
|
sylbi |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 50 |
49
|
imp |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN ) |