Metamath Proof Explorer


Theorem nnoALTV

Description: An alternate characterization of an odd number greater than 1. (Contributed by AV, 2-Jun-2020) (Revised by AV, 21-Jun-2020)

Ref Expression
Assertion nnoALTV
|- ( ( N e. ( ZZ>= ` 2 ) /\ N e. Odd ) -> ( ( N - 1 ) / 2 ) e. NN )

Proof

Step Hyp Ref Expression
1 oddm1div2z
 |-  ( N e. Odd -> ( ( N - 1 ) / 2 ) e. ZZ )
2 1 adantl
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ N e. Odd ) -> ( ( N - 1 ) / 2 ) e. ZZ )
3 eluz2b1
 |-  ( N e. ( ZZ>= ` 2 ) <-> ( N e. ZZ /\ 1 < N ) )
4 1red
 |-  ( N e. ZZ -> 1 e. RR )
5 zre
 |-  ( N e. ZZ -> N e. RR )
6 4 5 posdifd
 |-  ( N e. ZZ -> ( 1 < N <-> 0 < ( N - 1 ) ) )
7 6 biimpa
 |-  ( ( N e. ZZ /\ 1 < N ) -> 0 < ( N - 1 ) )
8 peano2zm
 |-  ( N e. ZZ -> ( N - 1 ) e. ZZ )
9 8 zred
 |-  ( N e. ZZ -> ( N - 1 ) e. RR )
10 2re
 |-  2 e. RR
11 10 a1i
 |-  ( N e. ZZ -> 2 e. RR )
12 2pos
 |-  0 < 2
13 12 a1i
 |-  ( N e. ZZ -> 0 < 2 )
14 9 11 13 3jca
 |-  ( N e. ZZ -> ( ( N - 1 ) e. RR /\ 2 e. RR /\ 0 < 2 ) )
15 14 adantr
 |-  ( ( N e. ZZ /\ 1 < N ) -> ( ( N - 1 ) e. RR /\ 2 e. RR /\ 0 < 2 ) )
16 gt0div
 |-  ( ( ( N - 1 ) e. RR /\ 2 e. RR /\ 0 < 2 ) -> ( 0 < ( N - 1 ) <-> 0 < ( ( N - 1 ) / 2 ) ) )
17 15 16 syl
 |-  ( ( N e. ZZ /\ 1 < N ) -> ( 0 < ( N - 1 ) <-> 0 < ( ( N - 1 ) / 2 ) ) )
18 7 17 mpbid
 |-  ( ( N e. ZZ /\ 1 < N ) -> 0 < ( ( N - 1 ) / 2 ) )
19 3 18 sylbi
 |-  ( N e. ( ZZ>= ` 2 ) -> 0 < ( ( N - 1 ) / 2 ) )
20 19 adantr
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ N e. Odd ) -> 0 < ( ( N - 1 ) / 2 ) )
21 elnnz
 |-  ( ( ( N - 1 ) / 2 ) e. NN <-> ( ( ( N - 1 ) / 2 ) e. ZZ /\ 0 < ( ( N - 1 ) / 2 ) ) )
22 2 20 21 sylanbrc
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ N e. Odd ) -> ( ( N - 1 ) / 2 ) e. NN )