Step |
Hyp |
Ref |
Expression |
1 |
|
oddm1div2z |
|- ( N e. Odd -> ( ( N - 1 ) / 2 ) e. ZZ ) |
2 |
1
|
adantl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ N e. Odd ) -> ( ( N - 1 ) / 2 ) e. ZZ ) |
3 |
|
eluz2b1 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. ZZ /\ 1 < N ) ) |
4 |
|
1red |
|- ( N e. ZZ -> 1 e. RR ) |
5 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
6 |
4 5
|
posdifd |
|- ( N e. ZZ -> ( 1 < N <-> 0 < ( N - 1 ) ) ) |
7 |
6
|
biimpa |
|- ( ( N e. ZZ /\ 1 < N ) -> 0 < ( N - 1 ) ) |
8 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
9 |
8
|
zred |
|- ( N e. ZZ -> ( N - 1 ) e. RR ) |
10 |
|
2re |
|- 2 e. RR |
11 |
10
|
a1i |
|- ( N e. ZZ -> 2 e. RR ) |
12 |
|
2pos |
|- 0 < 2 |
13 |
12
|
a1i |
|- ( N e. ZZ -> 0 < 2 ) |
14 |
9 11 13
|
3jca |
|- ( N e. ZZ -> ( ( N - 1 ) e. RR /\ 2 e. RR /\ 0 < 2 ) ) |
15 |
14
|
adantr |
|- ( ( N e. ZZ /\ 1 < N ) -> ( ( N - 1 ) e. RR /\ 2 e. RR /\ 0 < 2 ) ) |
16 |
|
gt0div |
|- ( ( ( N - 1 ) e. RR /\ 2 e. RR /\ 0 < 2 ) -> ( 0 < ( N - 1 ) <-> 0 < ( ( N - 1 ) / 2 ) ) ) |
17 |
15 16
|
syl |
|- ( ( N e. ZZ /\ 1 < N ) -> ( 0 < ( N - 1 ) <-> 0 < ( ( N - 1 ) / 2 ) ) ) |
18 |
7 17
|
mpbid |
|- ( ( N e. ZZ /\ 1 < N ) -> 0 < ( ( N - 1 ) / 2 ) ) |
19 |
3 18
|
sylbi |
|- ( N e. ( ZZ>= ` 2 ) -> 0 < ( ( N - 1 ) / 2 ) ) |
20 |
19
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ N e. Odd ) -> 0 < ( ( N - 1 ) / 2 ) ) |
21 |
|
elnnz |
|- ( ( ( N - 1 ) / 2 ) e. NN <-> ( ( ( N - 1 ) / 2 ) e. ZZ /\ 0 < ( ( N - 1 ) / 2 ) ) ) |
22 |
2 20 21
|
sylanbrc |
|- ( ( N e. ( ZZ>= ` 2 ) /\ N e. Odd ) -> ( ( N - 1 ) / 2 ) e. NN ) |