Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
2 |
|
oddp1d2 |
|- ( N e. ZZ -> ( -. 2 || N <-> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
3 |
1 2
|
syl |
|- ( N e. NN -> ( -. 2 || N <-> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
4 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
5 |
4
|
nnred |
|- ( N e. NN -> ( N + 1 ) e. RR ) |
6 |
|
2re |
|- 2 e. RR |
7 |
6
|
a1i |
|- ( N e. NN -> 2 e. RR ) |
8 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
9 |
|
1red |
|- ( N e. NN -> 1 e. RR ) |
10 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
11 |
|
0lt1 |
|- 0 < 1 |
12 |
11
|
a1i |
|- ( N e. NN -> 0 < 1 ) |
13 |
8 9 10 12
|
addgt0d |
|- ( N e. NN -> 0 < ( N + 1 ) ) |
14 |
|
2pos |
|- 0 < 2 |
15 |
14
|
a1i |
|- ( N e. NN -> 0 < 2 ) |
16 |
5 7 13 15
|
divgt0d |
|- ( N e. NN -> 0 < ( ( N + 1 ) / 2 ) ) |
17 |
16
|
anim1ci |
|- ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( N + 1 ) / 2 ) e. ZZ /\ 0 < ( ( N + 1 ) / 2 ) ) ) |
18 |
|
elnnz |
|- ( ( ( N + 1 ) / 2 ) e. NN <-> ( ( ( N + 1 ) / 2 ) e. ZZ /\ 0 < ( ( N + 1 ) / 2 ) ) ) |
19 |
17 18
|
sylibr |
|- ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( N + 1 ) / 2 ) e. NN ) |
20 |
19
|
ex |
|- ( N e. NN -> ( ( ( N + 1 ) / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. NN ) ) |
21 |
|
nnz |
|- ( ( ( N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) |
22 |
20 21
|
impbid1 |
|- ( N e. NN -> ( ( ( N + 1 ) / 2 ) e. ZZ <-> ( ( N + 1 ) / 2 ) e. NN ) ) |
23 |
3 22
|
bitrd |
|- ( N e. NN -> ( -. 2 || N <-> ( ( N + 1 ) / 2 ) e. NN ) ) |