| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
|- ( N e. ( Prime \ { 2 } ) -> N e. Prime ) |
| 2 |
|
prmnn |
|- ( N e. Prime -> N e. NN ) |
| 3 |
1 2
|
syl |
|- ( N e. ( Prime \ { 2 } ) -> N e. NN ) |
| 4 |
|
oddprm |
|- ( N e. ( Prime \ { 2 } ) -> ( ( N - 1 ) / 2 ) e. NN ) |
| 5 |
|
nnz |
|- ( ( ( N - 1 ) / 2 ) e. NN -> ( ( N - 1 ) / 2 ) e. ZZ ) |
| 6 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 7 |
|
oddm1d2 |
|- ( N e. ZZ -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| 8 |
6 7
|
syl |
|- ( N e. NN -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| 9 |
5 8
|
syl5ibrcom |
|- ( ( ( N - 1 ) / 2 ) e. NN -> ( N e. NN -> -. 2 || N ) ) |
| 10 |
4 9
|
syl |
|- ( N e. ( Prime \ { 2 } ) -> ( N e. NN -> -. 2 || N ) ) |
| 11 |
3 10
|
jcai |
|- ( N e. ( Prime \ { 2 } ) -> ( N e. NN /\ -. 2 || N ) ) |