Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|- ( N e. ( Prime \ { 2 } ) -> N e. Prime ) |
2 |
|
prmnn |
|- ( N e. Prime -> N e. NN ) |
3 |
1 2
|
syl |
|- ( N e. ( Prime \ { 2 } ) -> N e. NN ) |
4 |
|
oddprm |
|- ( N e. ( Prime \ { 2 } ) -> ( ( N - 1 ) / 2 ) e. NN ) |
5 |
|
nnz |
|- ( ( ( N - 1 ) / 2 ) e. NN -> ( ( N - 1 ) / 2 ) e. ZZ ) |
6 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
7 |
|
oddm1d2 |
|- ( N e. ZZ -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
8 |
6 7
|
syl |
|- ( N e. NN -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
9 |
5 8
|
syl5ibrcom |
|- ( ( ( N - 1 ) / 2 ) e. NN -> ( N e. NN -> -. 2 || N ) ) |
10 |
4 9
|
syl |
|- ( N e. ( Prime \ { 2 } ) -> ( N e. NN -> -. 2 || N ) ) |
11 |
3 10
|
jcai |
|- ( N e. ( Prime \ { 2 } ) -> ( N e. NN /\ -. 2 || N ) ) |