Metamath Proof Explorer


Theorem nnoddn2prm

Description: A prime not equal to 2 is an odd positive integer. (Contributed by AV, 28-Jun-2021)

Ref Expression
Assertion nnoddn2prm
|- ( N e. ( Prime \ { 2 } ) -> ( N e. NN /\ -. 2 || N ) )

Proof

Step Hyp Ref Expression
1 eldifi
 |-  ( N e. ( Prime \ { 2 } ) -> N e. Prime )
2 prmnn
 |-  ( N e. Prime -> N e. NN )
3 1 2 syl
 |-  ( N e. ( Prime \ { 2 } ) -> N e. NN )
4 oddprm
 |-  ( N e. ( Prime \ { 2 } ) -> ( ( N - 1 ) / 2 ) e. NN )
5 nnz
 |-  ( ( ( N - 1 ) / 2 ) e. NN -> ( ( N - 1 ) / 2 ) e. ZZ )
6 nnz
 |-  ( N e. NN -> N e. ZZ )
7 oddm1d2
 |-  ( N e. ZZ -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. ZZ ) )
8 6 7 syl
 |-  ( N e. NN -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. ZZ ) )
9 5 8 syl5ibrcom
 |-  ( ( ( N - 1 ) / 2 ) e. NN -> ( N e. NN -> -. 2 || N ) )
10 4 9 syl
 |-  ( N e. ( Prime \ { 2 } ) -> ( N e. NN -> -. 2 || N ) )
11 3 10 jcai
 |-  ( N e. ( Prime \ { 2 } ) -> ( N e. NN /\ -. 2 || N ) )