Metamath Proof Explorer


Theorem nnoni

Description: A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994)

Ref Expression
Hypothesis nnoni.1
|- A e. _om
Assertion nnoni
|- A e. On

Proof

Step Hyp Ref Expression
1 nnoni.1
 |-  A e. _om
2 nnon
 |-  ( A e. _om -> A e. On )
3 1 2 ax-mp
 |-  A e. On