| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subcl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - B ) e. CC ) | 
						
							| 3 |  | addsub |  |-  ( ( ( A - B ) e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + B ) - C ) = ( ( ( A - B ) - C ) + B ) ) | 
						
							| 4 | 3 | eqcomd |  |-  ( ( ( A - B ) e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) - C ) + B ) = ( ( ( A - B ) + B ) - C ) ) | 
						
							| 5 | 2 4 | syld3an1 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) - C ) + B ) = ( ( ( A - B ) + B ) - C ) ) | 
						
							| 6 |  | npcan |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + B ) = A ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + B ) = A ) | 
						
							| 8 | 7 | oveq1d |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + B ) - C ) = ( A - C ) ) | 
						
							| 9 | 5 8 | eqtrd |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) - C ) + B ) = ( A - C ) ) |